CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction |
Zhou-Zhou Sun(孙周洲)1, Yu Yang(杨玉)1, J Schliemann2 |
1 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China; 2 Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany |
|
|
Abstract We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole-dipole interaction (DDI) between the two particles, the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession, reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
|
Received: 25 January 2018
Revised: 04 April 2018
Accepted manuscript online:
|
PACS:
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11274236) and the Deutsche Forschungsgemeinschaft via SFB 689. |
Corresponding Authors:
Zhou-Zhou Sun
E-mail: phzzsun@suda.edu.cn
|
Cite this article:
Zhou-Zhou Sun(孙周洲), Yu Yang(杨玉), J Schliemann Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction 2018 Chin. Phys. B 27 067501
|
[1] |
Hehn M, Ounadjela K, Bucher J P, Rousseaux F and Decanini D 1996 Science 272 1782
|
[2] |
Stamm C, Marty F, Vaterlaus A, Weich V and Egger S 1998 Science 282 449
|
[3] |
Sun S H, Murray C B, Weller D, Foiks L and Moser A 2000 Science 287 1989
|
[4] |
Zitoun D, Respaud M, Fromen M C, Casanove M J and Lecante P 2002 Phys. Rev. Lett. 89 037203
|
[5] |
Hillebrands B and Ounadjela K 2002 Spin dynamics in confined magnetic structures I (Berlin:Springer-Verlag) pp. 156-158
|
[6] |
Wang X R and Sun Z Z 2006 Physics 35 469 (in Chinese)
|
[7] |
Stoner E C and Wohlfarth P E 1948 Philos. Trans. R. Soc. London, Ser. A 240 599
|
[8] |
He L, Wang D and Doye W D 1994 IEEE Trans. Magn. 30 4086
|
[9] |
Hiebert W K, Stankiewicz A and Freeman M R 1997 Phys. Rev. Lett. 79 1134
|
[10] |
Crawford T W Silva T J, Teplin C W and Rogers C T 1999 Appl. Phys. Lett. 74 3386
|
[11] |
Acremann Y, Back C H, Buess M, Portmann O and Vaterlaus A 2000 Science 290 492
|
[12] |
Stamps R L and Hillebrands B 1999 Appl. Phys. Lett. 75 1143
|
[13] |
Back C H, Weller D, Heidmann J, Mauri D, Guarisco D, Garwin E L and Siegmann H C 1998 Phys. Rev. Lett. 81 3251
|
[14] |
Schumacher H W, Chappert C, Crozat P, Sousa R C, Freitas P P, Miltat J, Fassbender J and Hillebrands B 2003 Phys. Rev. Lett. 90 017201
|
[15] |
Thirion C, Wernsdorfer W and Mailly D 2003 Nat. Mater. 2 524
|
[16] |
Sukhov A and Berakdar J 2009 Phys. Rev. B 79 134433
|
[17] |
Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205
|
[18] |
Tsoi M, Jansen A G M, Bass J, Chiang W C, Seck M, Tsoi V and Wyder P 1998 Phys. Rev. Lett. 80 4281
|
[19] |
Slonczewski J 1996 J. Magn. Magn. Mater. 159 L1
|
[20] |
Bazaliy Y B, Jones B A and Zhang S C 1998 Phys. Rev. B 57 R3213
|
[21] |
Zhang S, Levy P M and Fert A 2002 Phys. Rev. Lett. 88 236601
|
[22] |
Stiles M D and Zangwill A 2002 Phys. Rev. B 66 014407
|
[23] |
Wang X R and Sun Z Z 2007 Phys. Rev. Lett. 98 077201
|
[24] |
Sun J 2003 Nature 425 359
|
[25] |
Lu H Z and Shen S Q 2009 Phys. Rev. B 80 094401
|
[26] |
Hatami M, Gerrit E W B, Zhang Q Z and and Paul J K 2007 Phys. Rev. Lett. 99 066603
|
[27] |
Yuan Z, Wang S and Xia K 2010 Solid State Commun. 150 548
|
[28] |
Nguyen A K, Skadsem H J and Brataas A 2007 Phys. Rev. Lett. 98 146602
|
[29] |
Hals K M D, Nguyen A K and Brataas A 2009 Phys. Rev. Lett. 102 256601
|
[30] |
Garate I, Gilmore K, Stiles M D and MacDonald A H 2009 Phys. Rev. B 79 104416
|
[31] |
Bertram H N and Mallinson J C 1969 J. Appl. Phys. 40 1301
|
[32] |
Bertram H N and Mallinson J C 1970 J. Appl. Phys. 41 1102
|
[33] |
Chen W, Zhang S and Bertram H N 1992 J. Appl. Phys. 71 5579
|
[34] |
Lyberatos A and Chantrell R W 1993 J. Appl. Phys. 73 6501
|
[35] |
Lu J J, Lin M T, Kuo C C and Huang H L 1999 J. Appl. Phys. 85 5558
|
[36] |
Xu C, Hui P M, Zhou J H and Li Z Y 2002 J. Appl. Phys. 91 5957
|
[37] |
Plamada A V, Cimpoesu D and Stancu A 2010 Appl. Phys. Lett. 96 122505
|
[38] |
Sun Z Z, Lopez A and Schliemann J 2011 J. Appl. Phys. 109 104303
|
[39] |
Landau L and Lifshitz E 1953 Phys. Z. Sowjetunion 8 153
|
[40] |
Bazaliy Y B, Jones B A and Zhang S C 2004 Phys. Rev. B 69 094421
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|