Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(4): 1448-1453    DOI: 10.1088/1674-1056/17/4/050
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

X-shape oligo(thiophene)s as donor materials for vacuum-deposited organic photovoltaic cells

Wang Ya-Nan(王亚楠)a), Zhou Yin-Hua(周印华)a), Xu Yue(徐跃)b), Sun Xiao-Bo(孙晓波)c), Wu Wei-Cai(吴伟才)a), Tian Wen-Jing(田文晶)a), and Liu Yun-Qi(刘云圻)c)
a State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; b The Analysis and Testing Experimental Center, Jilin University, Changchun 130021, China; c Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Abstract  The films of two $x$-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4-ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV--Vis absorptions show red-shifted and broadened absorptions of the vacuum-evaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and 11T as donors and $N$, $N'-$bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP-PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm$^{2}$ has been demonstrated by the measurements of current ($I$)- voltage ($V$) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without $\alpha $, $\beta $ linkage.
Keywords:  oligo(thiophene)s      vacuum-evaporated film      solar cell  
Received:  17 August 2007      Revised:  18 October 2007      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  78.40.Me (Organic compounds and polymers)  
  78.66.Qn (Polymers; organic compounds)  
  81.15.Ef  
  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CB613401), the National Natural Science Foundation of China (Grant Nos 20474023 and 50673035), the Cooperation Research Project of National Natural Science Fo

Cite this article: 

Wang Ya-Nan(王亚楠), Zhou Yin-Hua(周印华), Xu Yue(徐跃), Sun Xiao-Bo(孙晓波), Wu Wei-Cai(吴伟才), Tian Wen-Jing(田文晶), and Liu Yun-Qi(刘云圻) X-shape oligo(thiophene)s as donor materials for vacuum-deposited organic photovoltaic cells 2008 Chin. Phys. B 17 1448

[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!