Abstract MgCNi3, an intermetallic compound superconductor with a cubic perovskite crystal structure, has been synthesized using fine Mg and Ni powders and carbon nanotubes (CNTs) as starting materials by the conventional powder metallurgy method. The composition, microstructure and superconductivity are characterized using x-ray diffraction (XRD), energy dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and superconducting quantum interference device (SQUID) magnetometer. The results indicate that the phases of the synthesized samples are MgCNi3 (major phase) and traces of C and MgO. The MgCNi3 particle sizes range from several hundreds of nanometres to several micrometres. The onset superconducting transition temperature Tc of the MgCNi3 sample is about 7.2 K. The critical current density Jc is about 3.44×104A/cm2 calculated according to the Bean model from the magnetization hysteresis loop of the slab MgCNi3 sample at 5K and zero applied field.
Received: 19 October 2007
Revised: 28 December 2007
Accepted manuscript online:
Fund: Project supported by the National
Natural Science Foundation of China (Grant No 60571043).
Cite this article:
Xia Qing-Lin(夏庆林), Yi Jian-Hong(易健宏), Peng Yuan-Dong(彭元东), Luo Shu-Dong(罗述东), Wang Hong-Zhong(王红忠), and Li Li-Ya(李丽娅) Synthesis of superconductor MgCNi3 with carbon nanotubes 2008 Chin. Phys. B 17 1421
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.