Effect of heat treatment on electronic phase in underdoped La2-xSrxCuO4 single crystal
Shen Cai-Xia(申彩霞), Shen Xiao-Li(慎晓丽), Lu Wei(陆伟), Dong Xiao-Li(董晓莉), Li Zheng-Cai(李正才), Xiong Ji-Wu(熊季午), and Zhou Fang(周放)†
National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract Superconducting La2-xSrxCuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. The response of intrinsic electronic property of the crystals to the change of hole density in La2-xSrxCuO4 in the vicinity of the magic doping of x =1/16 (=0.0625) is studied in detail by magnetic measurements under various fields up to 1 T. It is found that when the superconducting critical temperature ($T_{\rm C}$) increases with the oxygen content, there appears also a new subtle electronic state that can be detected from the differential curves of diamagnetic susceptibility d$\chi$/d$T$ of the crystal sample. In contrast with the intrinsic state, the new subtle electronic state is very fragile under the magnetic fields. Our results indicate that a moderate change in oxygen doping does not significantly modify the intrinsic electronic state originally existing at the magic doping level.
Received: 16 November 2007
Revised: 18 December 2007
Accepted manuscript online:
Fund: Project supported by
the Ministry of Science and Technology of China (973 project Grant
No 2006CB0L0302), the National Natural Science Foundation of China
(Grant No 10574149) and Chinese Academy of Sciences (Grant No
KJCX2-SW-W18).
Cite this article:
Shen Cai-Xia(申彩霞), Shen Xiao-Li(慎晓丽), Lu Wei(陆伟), Dong Xiao-Li(董晓莉), Li Zheng-Cai(李正才), Xiong Ji-Wu(熊季午), and Zhou Fang(周放) Effect of heat treatment on electronic phase in underdoped La2-xSrxCuO4 single crystal 2008 Chin. Phys. B 17 1425
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.