Please wait a minute...
Chinese Physics, 2005, Vol. 14(8): 1581-1584    DOI: 10.1088/1009-1963/14/8/019
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Self-assembling three-dimensional colloidal photonic crystal multilayers from aqueous ethanol mixture solutions

Wang Jing (汪静)ab, Yuan Chun-Wei (袁春伟)a, Tang Fang-Qiong (唐芳琼)c
a Key Laboratory of Molecular and Biomolecular Electronics (Southeast University), Ministry of Education, Nanjing 210096, China; b College of Science, Dalian Fisheries University, Dalian 116023, China; c Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101, China
Abstract  Vertical deposition technique to fabricate thin film solid artificial opals is becoming widely used. In the present work, we report our research on solvent modification and its effect on the quality of colloidal crystals. We used aqueous ethanol mixture solution to replace the ethanol solution, and used the vertical deposition technique to pack the spherical colloids into close-packed arrays. High quality samples can be prepared with thickness up to 20μm in one step. Furthermore, large spheres (diameters greater than 500nm) were successfully crystallized. Scanning electron microscopy (SEM) and optical methods were used to measure sample thickness and uniformity. The number of layers was calculated from the spectral separation of the Fabry--Perot fringes.
Keywords:  colloid crystal multilayers      solvent modification      Fabry- Perot fringes      layer number  
Received:  27 September 2004      Revised:  14 March 2005      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  82.70.Dd (Colloids)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 69831010 and 60121101).

Cite this article: 

Wang Jing (汪静), Yuan Chun-Wei (袁春伟), Tang Fang-Qiong (唐芳琼) Self-assembling three-dimensional colloidal photonic crystal multilayers from aqueous ethanol mixture solutions 2005 Chinese Physics 14 1581

[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[3] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[11] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[12] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[13] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[14] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[15] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
No Suggested Reading articles found!