Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 088701    DOI: 10.1088/1674-1056/19/8/088701
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of electrolyte concentration on DNA A–B conformational transition:An unrestrained molecular dynamics simulation study

Shintaro Fujimoto(藤本晋太郎) and Yu Yang-Xin(于养信)
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Abstract  The DNA conformational transition depends on both the DNA sequences and environment such as solvent as well as electrolyte in the solution. This paper uses the AMBER8 package to investigate the electrolyte concentration influence on the dynamics of the A→B conformational transition of DNA duplex d(CGCGAATTCGCG)2. The results from the restrained molecular dynamics (MD) simulations indicate that the total energies of the systems for A–DNA are always higher than those for B–DNA, and that the A→B conformational transition in aqueous NaCl solution is a downhill process. The results from the unrestrained MD simulations, as judged by the average distance between the C5' atoms (average helical rise per ten base pair), show that the concentrated NaCl solution slows down the A→B conformational transition. This observation can be well understood by analyses of the difference between the counterion distributions around A–DNA and B–DNA.
Keywords:  molecular dynamics simulation      nucleic acid      conformational transition      electrolyte  
Received:  05 October 2009      Revised:  23 December 2009      Accepted manuscript online: 
PACS:  87.15.H- (Dynamics of biomolecules)  
  87.14.G- (Nucleic acids)  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.15.B- (Structure of biomolecules)  
  87.15.Cc (Folding: thermodynamics, statistical mechanics, models, and pathways)  
  87.15.N- (Properties of solutions of macromolecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20876083 and 20736003) and Specialized Research Fund for the Doctorial Program of Higher Education of China (Grant No. 2007003009).

Cite this article: 

Shintaro Fujimoto(藤本晋太郎) and Yu Yang-Xin(于养信) Effect of electrolyte concentration on DNA A–B conformational transition:An unrestrained molecular dynamics simulation study 2010 Chin. Phys. B 19 088701

[1] Wang S and Kool E T 1995 wxBiochemistry 34 4125
[2] Ghosh A and Bansal M 2003 wxActa Crystallogr. D: Biol. Crystallogr. 59 620
[3] Gao J and Xu Z Y 2009 wxChin. Phys. B 18 370
[4] Ma S S, Xu H, Wang H Y and Guo R 2009 wxChin. Phys. B 18 3591
[5] Franklin R E and Gosling R G 1953 wxActa Crystallogr. D: Biol. Crystallogr. 6 673
[6] Dickerson R E, Drew H R, Conner B N, Wing R M, Fratini A V and Kopka M L 1982 wxScience 216 475
[7] Sheth A, Hosur R V, Govil G, Hosur M V, Kannan K K, Tan Z K and Miles H T 1989 wxBiochemistry 28 7275
[8] Prive G G, Yanagi K and Dickerson R E 1991 wxJ. Mol. Biol. 217 177
[9] Altona C and Sundaralingam M 1972 wxJ. Am. Chem. Soc. 94 8205
[10] Fran-Kamenetskii M D 1997 wxPhys. Rep. 288 13
[11] Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K and Dickerson R E 1980 wxNature 287 755
[12] Leslie A G W, Arnott S, Chandrasekaran R and Ratliff R L 1980 wxJ. Mol. Biol. 143 49
[13] Cheatham T E and Kollman P A 1996 wxJ. Mol. Biol. 259 434
[14] Pichler A, Ruedisser S, Winger R H, Liedl K R, Hallbrucker A and Mayer E 2000 wxJ. Am. Chem. Soc. 122 716
[15] Zhao X F, Shang Y Z, Liu H L, Hu Y and Jiang J W 2008 wxChin. J. Chem. Eng. 16 923
[16] Li K, Dong R X, Ban G, Han H W, Su W and Yan X L 2009 wxActa Phys. Sin. 58 6477 (in Chinese)
[17] Ponnuswamy P K and Gromiha M M 1994 wxJ. Theor. Biol. 169 419
[18] Hagerman P J 1994 wxBiochim. Biophys. Acta 1131 125
[19] Young M A, Rabishanker G, Beveridge D L and Berman H M 1995 wxBiophys. J. 68 2454
[20] Borovok N, Molotsky T, Ghabboun J, Cohen H, Porath D and Kotlyar A 2007 wxFEBS Lett. 581 5843
[21] Noy A, Perez A, Laughton C A and Orozco M 2007 wxNucl. Acids Res. 35 3330
[22] Savelyev A and Papoian G A 2006 wxJ. Am. Chem. Soc. 128 14506
[23] Heddi B, Foloppe N, Hantz E and Hartmann B 2007 wxJ. Mol. Biol. 368 1403
[24] Stellwagen E, Dong Q and Stellwagen N C 2005 wxBiopolymers 78 62
[25] Wang K, Yu Y X and Gao G H 2004 wxPhys. Rev. E 70 011912
[26] Wang K, Yu Y X and Gao G H 2008 wxJ. Chem. Phys. 128 185101
[27] Manning G S 2002 wxBiophys. Chem. 101--102 461
[28] Vorlickova M, Minyat E E and Kypr J 1984 wxBiopolymers 23 1
[29] Zimmermann S B and Pheiffer B H 1979 wxJ. Mol. Biol. 135 1023
[30] Vorlickova M 1995 wxBiophys. J. 69 2033
[31] Drew H, Takano T, Tanaka S, Itakura K and Dickerson R E 1980 wxNature 286 567
[32] Nishimura Y, Torigoe C and Tsuboi M 1986 wxNucl. Acids Res. 14 2721
[33] Soliva R, Luque F J, Alhambra C and Orozco M 1999 wxJ. Biomol. Struct. Dyn. 17 89
[34] Banavali N K and Roux B 2005 wxJ. Am. Chem. Soc. 127 6866
[30] Mazur A K 2003 wxJ. Am. Chem. Soc. 125 7849
[36] Petersen H G 1995 wxJ. Chem. Phys. 103 3668
[37] Dickerson R E 1998 wxNucl. Acids Res. 26 1906
[38] Rueda M, Cubero E, Laughton C A and Orozco M 2004 wxBiophys. J. 87 800
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[10] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[13] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[14] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[15] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
No Suggested Reading articles found!