Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017801    DOI: 10.1088/1674-1056/ae1c25
RAPID COMMUNICATION Prev   Next  

Structural phase transition and quasi-layered active-ion distribution suppress concentration quenching in Tb3+-activated KBi(MoO4)2

Mengyu Zhang(张梦宇)1,2,†, Shujing Pan(潘淑晶)1,2,†, Haitang Hu(胡海棠)3,4, Wenzhi Su(宿文志)1,2, Yong Zou(邹勇)1,2, Shoujun Ding(丁守军)1,2,‡, and Qingli Zhang(张庆礼)4
1 School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243002, China;
2 Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Maanshan 243002, China;
3 University of Science and Technology of China, Hefei 230026, China;
4 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Conventional Tb$^{3+}$-doped phosphors typically suffer from concentration quenching once the doping level exceeds a critical threshold. Consequently, the development of Tb$^{3+}$ phosphors with intrinsic resistance to concentration quenching has become a key research focus. In this work, we successfully synthesized KBi(MoO$_{4}$)$_{2}$: $x$Tb$^{3+}$ ($x = 0$-100 at%) (denoted as KBM: $x$Tb$^{3+}$) phosphors via a high-temperature solid-state reaction. Remarkably, no concentration quenching was observed across the entire doping range. This anti-quenching behavior originates from the large Tb$^{3+}$-Tb$^{3+}$ interionic distance ($> 5$ Å) inherent to the quasi-layered crystal structure, which effectively suppresses multipole-interaction-mediated energy migration. At full Tb$^{3+}$ substitution ($x = 100$ at%), the material undergoes a structural phase transition from the monoclinic KBM phase to the triclinic $\alpha $-KTb(MoO$_{4}$)$_{2}$ ($\alpha $-KTM) phase. The $\alpha $-KTM phosphor exhibits excellent thermal stability (activation energy $=$ 0.6129 eV) and a single-exponential decay profile, whereas KBM: $x$Tb$^{3+}$ ($x < 100$%) display double-exponential decay behaviors, attributed to dual energy transfer pathways. These findings provide new insights into the luminescence mechanisms of high-concentration rare-earth-doped systems and offer guidance for designing next-generation anti-quenching phosphors.
Keywords:  Tb3+ doping      layered crystal structure      anti-concentration quenching      structural phase transition  
Received:  14 September 2025      Revised:  24 October 2025      Accepted manuscript online:  06 November 2025
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  87.15.mq (Luminescence)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
Fund: This work was supported by the Natural Science Research Project of Anhui Province Education Department for Excellent Young Scholars (Grant No. 2024AH030007) and the National Natural Science Foundation of China (Grant No. 52202001).
Corresponding Authors:  Shoujun Ding     E-mail:  sjding@ahut.edu.cn

Cite this article: 

Mengyu Zhang(张梦宇), Shujing Pan(潘淑晶), Haitang Hu(胡海棠), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼) Structural phase transition and quasi-layered active-ion distribution suppress concentration quenching in Tb3+-activated KBi(MoO4)2 2026 Chin. Phys. B 35 017801

[1] Cho J, Park J H, Kim J K and Schubert E F 2017 Laser & Photonics Reviews 11 1600147
[2] Weinold M P, Kolesnikov S and Anadon L D 2025 Nat. Energy 10 616
[3] Tian H, Liu J W, Qiu K, Song J and Wang D J 2012 Chin. Phys. B 21 098504
[4] Li C, Zhang M, Zhang C, Su W, Zou Y, Ding S and Zhang Q 2025 Chin. Phys. B 34 087502
[5] Zhang Q, Wang X, Wu Z, Li X, Zhang K, Song Y, Fan J, Wang C K and Lin L 2023 Chin. Phys. B 32 103301
[6] Li G H, Yang N, Zhang J, Si J Y, Wang Z L, Cai G M and Wang X J 2020 Inorg. Chem. 59 3894
[7] George S D B, Nirathintavida Nittakaran S, Arockiasamy J J, Madamala S, Narasimman L, Kuppamuthu S and Xavier S S 2025 ACS Appl. Opt. Mater. 3 1011
[8] Yan L, Xing M, Ma Y, Kang L, Fu Y, Pang Q, Xin F, Wang H, Luo X and Tian Y 2024 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 308 123751
[9] Zeng C, Hu Y, Xia Z and Huang H 2015 RSC Adv. 5 68099
[10] Tikale R V, Kadam A R, Michalska-Domanska M and Dhoble S J 2025 Sci. Rep. 15 27748
[11] Fang L, Zhou X, Zhao Z, Zheng B, Xia H, Wang J, Song H and Chen B 2022 Chin. Phys. B 31 127802
[12] Baby B, Thomas S, Jose J, Gopinath M, Biju P R and Joseph C 2025 Journal of Luminescence 277 120895
[13] Dang P, Li G, Yun X, Zhang Q, Liu D, Lian H, Shang M and Lin J 2021 Light Sci. Appl. 10 29
[14] Muenchausen R E, Jacobsohn L G, Bennett B L, McKigney E A, Smith J F, Valdez J A and Cooke D W 2007 Journal of Luminescence 126 838
[15] Shi M, Zhang D and Chang C 2015 J. Alloys Compd. 627 25
[16] Kang T W, Jeong G J, Kim J H, Bae B and Kim S W 2022 New J. Chem. 46 10722
[17] Samal S K, Pushpendra, Yadav J and Naidu B S 2023 Ceramics International 49 20051
[18] Morozov V A, Posokhova S M, Istomin S Ya, Deyneko D V, Savina A A, Redkin B S, Lyskov N V, Spassky D A, Belik A A and Lazoryak B I 2021 Inorg. Chem. 60 9471
[19] Raj C J, Krishnan S, Dinakaran S, Priya S M N, Uthrakumar R and Das S J 2008 Crystal Growth & Design 8 3956
[20] Wang M, Wang C, Wang J, Lu L, Gong X, Tang X, Zhang F and You J 2020 Materials 13 5453
[21] Jayaraman A, Sharma S K, Wang S Y, Shieh S R, Ming L C and Cheong S W 1996 Pramana J. Phys. 47 151
[22] Noras J M 1980 J. Phys. C: Solid State Phys. 13 4779
[23] Zhou Y J, Zhang Y, Wang F J and Chen G L 2008 Appl. Phys. Lett. 92 241917
[24] Wang H, Yang T, Feng L, Ning Z, Liu M, Lai X, Gao D and Bi J 2018 J. Electron. Mater. 47 6494
[25] Demesh M, Gorbachenya K, Kisel V, Volkova E, Maltsev V, Koporulina E, Dunina E, Kornienko A, Fomicheva L and Kuleshov N 2021 OSA Continuum 4 822
[26] Huang Y, Zhou L, Yang L and Tang Z 2011 Opt. Mater. 33 777
[27] Ju H, Deng W, Wang B, Liu J, Tao X and Xu S 2012 J. Alloys Compd. 516 153
[28] Joubert M F, Jacquier B and Moncorge R 1983 Phys. Rev. B 28 3725
[29] Shi M, Zhang D and Chang C 2015 J. Alloys Compd. 627 25
[30] Boruc Z, Fetlinski B, Kaczkan M, Turczynski S, Pawlak D and Malinowski M 2012 J. Alloys Compd. 532 92
[31] Lv Q, Shao B, Ma X, Yang S, Wang C, Dong Y, Dong E and Wang C 2023 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 287 122126
[32] Tingming Jiang T J, Xue Yu X Y, Xuhui Xu X X, Hongling Yu H Y, Dacheng Zhou D Z and Jianbei Qiu J Q 2014 Chin. Opt. Lett. 12 011601
[33] Wang S, Lyu Z, Lu Z, Wang L, Wang J, Sun D, Tan T, Shen S and You H 2023 J. Mater. Chem. C 11 10634
[34] Chi F, Liu Q, Zhang J, Jiang B, Niu X and Liu S 2023 Opt. Mater. 143 114245
[35] Tsai Y Y, Chen H L, Chai Y L and Chang Y S 2013 Opt. Mater. 35 317
[36] Wu X, Qin S, Zhang R, Guo Y and Huang J 2024 ACS Appl. Nano Mater. 7 19593
[37] Jamal M U, Nagirnyi V, Chernenko K, Kotlov A, Smortsova Y and Spassky D 2025 Materials Research Bulletin 191 113553
[38] Hwang T Y, Choi Y, Song Y, Eom N S A, Kim S, Cho H B, Myung N V and Choa Y H 2018 J. Mater. Chem. C 6 972
[39] Mansouri S, Jandl S, Balli M, Laverdiere J, Fournier P and Dimitrov D Z 2016 Phys. Rev. B 94 115109
[40] Lin C C, Tsai T, Johnston H E, Fang H, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu S and Attfield J P 2017 J. Am. Chem. Soc. 34 11766
[41] Yao Q, Hu P, Sun P, Liu M, Dong R, Chao K, Liu Y, Jiang J and Jiang H 2020 Adv. Mater. 32 1907888
[42] Samariha B and Rezaee Ebrahim Saraee K 2018 Journal of Luminescence 198 389
[43] Hakami J, Kaynar U H, Ayvacikli M, Coban M B, Garcia-Guinea J, Townsend P D, Oglakci M and Can N 2022 Ceramics International 48 32256
[44] Patel N P, Srinivas M, Modi D, Verma V and Murthy K V R 2018 Rare Met. 37 587
[45] Murthy K V R, Prasad A S S and Rao M R 2012 Physics Procedia 29 70
[46] Yin H, Li Y, Bai J, Ma M and Liu J 2017 Journal of Materiomics 3 144
[47] Yuan H, Ma H, Wang G, Jia H and Sun X 2025 Journal of Molecular Structure 1321 139776
[1] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[2] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), and Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
[3] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[4] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2019, 28(6): 066402.
[8] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
No Suggested Reading articles found!