ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach |
H R Baghshahia b c, M K Tavassolya b d, A Behjata d |
a Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran; b The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran; c Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; d Photonics Research Group, Engineering Research Center, Yazd University, Yazd, Iran |
|
|
Abstract The interaction between a two-level atom and a single-mode field in the k-photon Jaynes-Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).
|
Received: 25 June 2013
Revised: 28 November 2013
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
89.70.Cf
|
(Entropy and other measures of information)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Corresponding Authors:
M K Tavassoly
E-mail: mktavassoly@yazd.ac.ir
|
About author: 42.50.-p; 89.70.Cf; 42.50.Ct; 42.50.Dv |
Cite this article:
H R Baghshahi, M K Tavassoly, A Behjat Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach 2014 Chin. Phys. B 23 074203
|
[1] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[2] |
Huang Y X and Guo G C 1996 Chin. Phys. 5 901
|
[3] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[4] |
Setare M R and Barzanjeh Sh 2009 Chin. Phys. Lett. 26 094211
|
[5] |
Bužek V, Moya-Cessa H, Knight P L and Phoenix S J D 1992 Phys. Rev. A 45 8190
|
[6] |
Ouyang X C, Fang M F, Kang G D, Deng X J and Huang L Y 2010 Chin. Phys. B 19 030309
|
[7] |
Tan L, Zhang Y Q and Zhu Z H 2011 Chin. Phys. B 20 070303
|
[8] |
Mandel L 1979 Opt. Lett. 4 205
|
[9] |
Mirzaee M and Kamani N 2013 Chin. Phys. B 22 094203
|
[10] |
Xie R H, Zou Y T and Liu D H 1996 Chin. Phys. Lett. 13 432
|
[11] |
Fang M F, Zhou P and Swain S 2009 J. Mod. Opt. 47 1043
|
[12] |
Zhang J, Bin S and Zou J 2009 Chin. Phys. B 18 1517
|
[13] |
Phoenix S J D and Knight P L 1988 Ann. Phys. 186 381
|
[14] |
Kayham H 2011 Phys. Scr. 84 045401
|
[15] |
Liao Q, Fang G, Wang Y, Ahmad M A and Liu S 2011 Optik. 122 1392
|
[16] |
Zhang J, Wang J and Zhang T 2007 Opt. Commun. 277 353
|
[17] |
Mortezapour A, Kordi Z and Mahmoudi M 2013 Chin. Phys. B 22 060310
|
[18] |
Kang D P, Liao Q H, Ahamd M A, Wang Y Y and Liu S T 2010 Chin. Phys. B 19 014206
|
[19] |
Ateto M S 2010 Int. J. Theor. Phys. 49 276
|
[20] |
Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
|
[21] |
Sukumar C V and Buck B 1981 Phys. Lett. A 83 211
|
[22] |
Bužek V 1989 Phys. Rev. A 39 3196
|
[23] |
Faghihi M J and Tavassoly M K 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035502
|
[24] |
Sántos-Sanchez O de los and Récamier J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015502
|
[25] |
Naderi M H, Soltanolkotabi M and Roknizadeh R 2004 J. Phys. Soc. Jpn. 73 2413
|
[26] |
Barzanjeh S, Naderi M H and Soltanolkotabi M 2010 J. Phys. A: Math. Theor. 43 375304
|
[27] |
Abdel-Aty M, Abdalla M S and Obada A S F 2001 J. Phys. A: Math. Gen. 34 9129
|
[28] |
Cordero S and Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502
|
[29] |
Honarasa G R and Tavassoly M K 2012 Phys. Scr. 86 035401
|
[30] |
Faghihi M J, Tavassoly M K and Hooshmandasl M R 2013 J. Opt. Soc. Am. B 30 1109
|
[31] |
Faghihi M J and Tavassoly M K 2013 J. Opt. Soc. Am. B 30 2810
|
[32] |
Faghihi M J and Tavassoly M K 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145506
|
[33] |
Obada A S F, Hanoura S A and Eied A A 2013 Laser Phys. 23 025201
|
[34] |
Abdalla M S, Obada A S F and Abdel-khalek S 2008 Chaos Soliton. Fract. 36 405
|
[35] |
Puri R R and Bullough R K 1988 J. Opt. Soc. Am. B 5 2021
|
[36] |
Ahmad M M A, Khalil E M and Obada A S F 2005 Opt. Commun. 257 76
|
[37] |
Obada A S F, Ahmad M M A, Khalil E M and Ali S I 2013 Opt. Commun. 287 215
|
[38] |
Liao Q H, Muhammad A A, Wang Y Y and Liu S T 2010 Commun. Theor. Phys. 53 931
|
[39] |
Man ko V I, Marmo G, Sudarshan E C G and Zaccaria F 1997 Phys. Scr. 55 528
|
[40] |
de Matos Filho R L and Vogel W 1996 Phys. Rev. A 54 4560
|
[41] |
Agarwal G S and Singh S 1982 Phys. Rev. A 25 3195
|
[42] |
Wolfang P 2000 Quantum Optics in Phase Space (Berlin: Wiley-VCH)
|
[43] |
Huang C, Tang L, Kong F, Fang J and Zhou M 2006 Physica A 368 25
|
[44] |
Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
|
[45] |
Li C X and Fang M F 2003 Chin. Phys. 12 0294
|
[46] |
de Matos Filho R L and Vogel W 1998 Phys. Rev. A 58 R1661
|
[47] |
Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
|
[48] |
Sivakumar S 1999 J. Phys. A: Math. Gen. 32 3441
|
[49] |
Safaeian O and Tavassoly M K 2011 J. Phys. A: Math. Theor. 44 225301
|
[50] |
Sudarshan E C J 1963 Phys. Rev. Lett. 10 277
|
[51] |
Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581
|
[52] |
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
|
[53] |
Chaichian M and Kulish P 1990 Phys. Lett. B 234 72
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|