Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094204    DOI: 10.1088/1674-1056/23/9/094204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator

Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花)
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We investigate the dynamics of two qubits coupled with a quantum oscillator by using the adiabatic approximation method. We take account of the interaction between the qubits and show how the entanglement is affected by the interaction parameter. The most interesting result is that we can prolong the entanglement time or improve the entanglement degree by using an appropriate interaction parameter. As the generation and preservation of entanglement of qubits are crucial for quantum information processing, our research will be useful.
Keywords:  Jaynes-Cummings model      ultra-strong coupling      adiabatic approximation  
Received:  17 December 2013      Revised:  02 March 2014      Accepted manuscript online: 
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875018 and 60578043).
Corresponding Authors:  Tian Gui-Hua     E-mail:  hua2007@126.com

Cite this article: 

Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花) Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator 2014 Chin. Phys. B 23 094204

[1] Schrödinger E 1935 Naturwissenschaften 23 807
[2] VanEnk S J, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 4293
[3] Ekert A K and Josza R 1991 Phys. Rev. Lett. 67 661
[4] Nielsen M A and Chuang I L 2000 Quantum Computa tion and Quantum Information (Cambridge: Cambridge University Press)
[5] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[6] Buluta I and Nori F 2009 Science 326 108
[7] Retzker A, Thompson R C, Segal D M and Plenio M B 2008 Phys. Rev. Lett. 101 260504
[8] Friedenauer A, Schmitz H, Glückert J T, Porras D and Schätz T 2008 Nat. Phys. 4 757
[9] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[10] Rajagopal A K, Jensen K L and Cummings F W 1999 Phys. Rev. Lett. A 259 285
[11] Rabi I I 1936 Phys. Rev. 49 324
[12] Allen L and Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover Publications)
[13] Holstein T 1959 Ann. Phys. 8 325
[14] Blais Ta, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[15] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[16] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
[17] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H 2006 Phys. Rev. Lett. 96 127006
[18] Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Göppl M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511
[19] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[20] You J Q and Nori F 2005 Physics Today 58 42
[21] You J Q and Nori F 2011 Nature 474 589
[22] Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
[23] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[24] Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
[25] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
[26] Paternostro M, Son W and Kim M S 2004 Phys. Rev. Lett. 92 197901
[27] Paternostro M, Son W, Kim M S, Falci G and Palm G M 2004 Phys. Rev. A 70 022320
[28] Lee J, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. Lett. 96 080501
[29] Zhou L and Yang G 2006 J. Phys. B 39 5143
[30] Rendell R W and Rajagopal A K 2003 Phys. Rev. A 67 062110
[31] Yönac M and Eberly J H 2010 Phys. Rev. A 82 022321
[32] Cao X, You J Q, Zheng H and Nori F 2011 New J. Phys. 13 073002
[33] Cao X, You J Q, Zheng H, Kofman A G and Nori F 2010 Phys. Rev. A 82 022119
[34] Cao X, Ai Q, Sun C P and Nori F 2012 Phys. Lett. A 376 349
[35] Lü X Y, Ashhab S, Cui W, Wu R and Nori F 2012 New J. Phys. 14 073041
[36] Hu X, Liu Y and Nori F 2012 Phys. Rev. B 86 035314
[37] Chen Q H, Li L, Liu T and Wang K L 2012 Chin. Phys. Lett. 29 014208
[38] Larson J 2012 Phys. Rev. Lett. 108 033601
[39] Irish E K, Gea-Banacloche J, Martin I and Swchab K C 2005 Phys. Rev. B 72 195410
[40] Agarwal S, Hashemi Rafsanjani S M and Eberly J H 2012 Phys. Rev. A 85 043815
[41] Ai Q, Li Y, Zheng H and Sun C P 2010 Phys. Rev. A 81 042116
[42] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311
[43] Wang Z H and Zhou D L 2013 Chin. Phys. B 22 114205
[44] Martinis J M 2009 Quantum Inf. Process. 8 81
[45] McDermott R, Simmonds R W, Steffen M, Cooper K B, Cicak K, Osborn K D, Oh S, Pappas D P and Martinis J M 2005 Science 307 1299
[46] Matsuo S, Ashhab S, Fujii T, Nori F, Nagai K and Hatakenaka N 2007 J. Phys. Soc. Jpn. 76 054802
[47] Chen Q H, Liu T, Zhang Y Y and Wang K L 2010 Phys. Rev. A 82 053841
[48] Chen Q H, Yang Y Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[49] Lee J, Paternostro M, Kim M S and Bose S 2006 Phys. Rev. Lett. 96 080501
[50] Tessier T E, Deutsch I H, Delgado A and Guridi I F 2003 Phys. Rev. A 68 062316
[51] Yang Q, Yang M and Cao Z L 2008 Chin. Phys. Lett. 25 825
[52] Zhang Y J, Ren T Q and Xia Y J 2008 Chin. Phys. B 17 1674
[53] Ai Q, Li Y, Zheng H and Sun C P 2010 Phys. Rev. A 81 042116
[54] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311
[55] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[56] Yu T and Eberly J H 2007 Quantum Information and Computation 7 459
[57] Wang C Z, Li C X, Nie L Y and Li J F 2011 Mol. Opt. Phys. 44 015503
[58] Chen Q H, Liu T, Zhang Y Y and Wang K L 2010 Phys. Rev. A 82 053841
[59] Zhang Y W, Yu L X, Liang J Q, Chen G, Jia S T and Nori F 2014 Scientific Reports 4 4083
[60] Shi X Y, Yu Y, You J Q and Nori F 2009 Phys. Rev. B 79 134431
[61] Lambert N, Chen Y N, Johansson R and Nori F 2009 Phys. Rev. B 80 165308
[1] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[2] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[3] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[4] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[5] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[6] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[7] Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator
Kun Dong(董锟). Chin. Phys. B, 2016, 25(12): 124202.
[8] Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation
M. Mirzaee, M. Batavani. Chin. Phys. B, 2015, 24(4): 040306.
[9] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[10] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[11] Analytical approach to dynamics of transformed rotating-wave approximation with dephasing
M. Mirzaee, N. Kamani. Chin. Phys. B, 2013, 22(9): 094203.
[12] Quantum correlations between two non-interacting atoms under the influence of a thermal environment
Hu Yao-Hua(胡要花) and Wang Jun-Qiang(王军强) . Chin. Phys. B, 2012, 21(1): 014203.
[13] Properties of field quantum entropy evolution in the Jaynes--Cummings model with initial squeezed coherent states field
Liu Wang-Yun(刘王云), An Yu-Ying(安毓英), and Yang Zhi-Yong(杨志勇). Chin. Phys. B, 2007, 16(12): 3704-3709.
[14] Evolution of field entropy and entanglement in the intensity-dependent two-mode Jaynes-Cummings model
Gao Yun-Feng (高云峰), Feng Jian (冯健), Wang Ji-Suo (王继锁). Chin. Phys. B, 2005, 14(5): 980-984.
[15] The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves
Lü Ke-Pu (吕克璞), Dou Fu-Quan (豆福全), Sun Jian-An (孙建安), Duan Wen-Shan (段文山), Shi Yu-Ren (石玉仁). Chin. Phys. B, 2005, 14(1): 33-36.
No Suggested Reading articles found!