Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110307    DOI: 10.1088/1674-1056/ac05ab
GENERAL Prev   Next  

Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces

Jing-Ying Wei(魏静莹)1, Qing Wang(王青)2, and Jian Jing(荆坚)1,†
1 Department of Physics and Electronic, Beijing University of Chemical Technology, Beijing 100029, China;
2 College of Physics and Technology, Xinjiang University, Urumqi 830046, China
Abstract  The supersymmetric properties of a charged planar Dirac oscillator coupling to a uniform perpendicular magnetic field are studied. We find that there is an N=2 supersymmetric structure in both commutative and noncommutative cases. We construct the generators of the supersymmetric algebras explicitly and show that the generators of the supersymmetric algebras can be mapped onto ones which only contain the left or right-handed chiral phonons by unitary transformations.
Keywords:  Dirac oscillator      anti-Jaynes-Cummings model      Jaynes-Cummings model      supersymmetry  
Received:  16 April 2021      Revised:  18 May 2021      Accepted manuscript online:  27 May 2021
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11465006).
Corresponding Authors:  Jian Jing     E-mail:  jingjian@mail.buct.edu.cn

Cite this article: 

Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚) Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces 2021 Chin. Phys. B 30 110307

[1] Ito D, Mori K and Carriere E 1967 Nuovo Cimento A 51 1119
[2] Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817
[3] Strange P 1998 Relativistic Quantum Mechanics (Cambridge: Cambridge University Press) pp. 269-279
[4] Quesne C and Moshinsky M 1990 J. Phys. A 23 2263
[5] Sadurn E, Torres J M and Seligman T H 2010 J. Phys. A 43 285204
[6] de Lange O L 1991 J. Math. Phys. 32 1296
[7] Mandal B P and Verma S 2010 Phys. Lett. A 374 1201
[8] Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617
[9] Romera E 2011 Phys. Rev. A 84 052102
[10] Franco-Villafane J A, Sadurni E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405
[11] Sadurnf E, Seligman T H and Mortessagne F 2010 New. J. Phys. 12 053014
[12] Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801
[13] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[14] Bermudez A, Martin-Delgado M A and Luis A 2008 Phys. Rev. A 77 063815
[15] Sachdev S 2000 Quantum Phase Transitions 2edn. (Springer) p. 5
[16] Hou Y L, Wang Q, Long Z W and Jing J 2015 Int. J. Theor. Phys. 54 1506
[17] Quesne C and Moshinsky M 1990 J. Phys. A: Math. Gen. 23 2263
[18] Benitez J, Romero R P M, Nunez H N and Salas-Brito A L 1990 Phys. Rev. Lett. 64 1643
[19] Song W Y and Zhang F L 2020 Chin. Phys. Lett. 37 050301
[20] Snyder H S 1946 Phys. Rev. 71 38
[21] Connes A, Douglas M and Schwarz A S 1998 J. High Energy Phys. 1998 003
[22] Seiberg N and Witten E 1999 J. High Energy Phys. 1999 032
[23] Douglas M R, Nekrasov N A 2001 Rev. Mod. Phys 73 977
[24] Chu C S and Ho P M 1999 Nucl. Phys. B 550 151
[25] Chu C S and Ho P M 2000 Nucl. Phys. B 568 447
[26] Ardalan H, Arfaei H and Sheikh-Jabbari M M 2000 Nucl. Phys. B 576 578
[27] Jing J and Long Z W 2005 Phys. Rev. D 72 126002
[28] Jing J 2006 Phys. Rev. D 73 086001
[29] Minwalla S, Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys. 2000 020
[30] Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys. 2000 035
[31] Gopakumar R, Minwalla S and Strominger A 2000 J. High Energy Phys. 2000 020
[32] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[33] Morariu B and Polychronakos A P 2001 Nucl. Phys. B 610 531
[34] Bellucci S, Nersessian A and Sochichiu C 2001 Phys. Lett. B 522 345
[35] Bellucci S and Nersessian A 2002 Phys. Lett. B 542 295
[36] Karabali D, Nair V P and Polychronakos A P 2002 Nucl. Phys. B 627 565
[37] Morariu B and Polychronakos A P 2002 Nucl. Phys. B 634 326
[38] Muthukumar B and Mitra P 2002 Phys. Rev. D 66 027701
[39] Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Phys. Rev. Lett. 86 2716
[40] Adorno T C, Baldiotti M C, Chaichian M, Gitman D M and Tureanu A 2009 Phys. Lett. B 682 235
[41] Acatrinei C 2001 J. High Energy Phys. 2001 007
[42] Chaichian M, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2002 Phys. Lett. B 527 149
[43] Chaichian M, Demichev A, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2001 Nucl. Phys. B 611 383
[44] Jing J, Liu F H and Chen J F 2008 Phys. Rev. D 78 125004
[45] Bastos C, Bernardini E and Bertolami O 2014 Phys. Rev. D 90 045023
[46] Bastos C, Bernardini A E and Bertolami O 2015 Phys. Rev. D 91 065036
[47] Bastos C, Bernardini A E, Bertolami O, Dias N C and Prata J N 2016 Phys. Rev. D 93 104055
[48] Bertolami O and Queiroz R 2011 Phys. Lett. A 375 4116
[49] Lin B S and Heng T H 2016 Chin. Phys. Lett. 33 110303
[50] Panella1 O and Roy P 2014 Phys. Rev. A 90 042111
[1] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[2] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[3] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[4] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[5] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[6] Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation
M. Mirzaee, M. Batavani. Chin. Phys. B, 2015, 24(4): 040306.
[7] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[8] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
[9] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[10] Analytical approach to dynamics of transformed rotating-wave approximation with dephasing
M. Mirzaee, N. Kamani. Chin. Phys. B, 2013, 22(9): 094203.
[11] The nonrelativistic oscillator strength of a hyperbolic-type potential
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo. Chin. Phys. B, 2013, 22(6): 060202.
[12] The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics
S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060303.
[13] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[14] The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method
He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳). Chin. Phys. B, 2012, 21(10): 100303.
[15] Quantum correlations between two non-interacting atoms under the influence of a thermal environment
Hu Yao-Hua(胡要花) and Wang Jun-Qiang(王军强) . Chin. Phys. B, 2012, 21(1): 014203.
No Suggested Reading articles found!