|
|
Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces |
Jing-Ying Wei(魏静莹)1, Qing Wang(王青)2, and Jian Jing(荆坚)1,† |
1 Department of Physics and Electronic, Beijing University of Chemical Technology, Beijing 100029, China; 2 College of Physics and Technology, Xinjiang University, Urumqi 830046, China |
|
|
Abstract The supersymmetric properties of a charged planar Dirac oscillator coupling to a uniform perpendicular magnetic field are studied. We find that there is an N=2 supersymmetric structure in both commutative and noncommutative cases. We construct the generators of the supersymmetric algebras explicitly and show that the generators of the supersymmetric algebras can be mapped onto ones which only contain the left or right-handed chiral phonons by unitary transformations.
|
Received: 16 April 2021
Revised: 18 May 2021
Accepted manuscript online: 27 May 2021
|
PACS:
|
03.65.Fd
|
(Algebraic methods)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11465006). |
Corresponding Authors:
Jian Jing
E-mail: jingjian@mail.buct.edu.cn
|
Cite this article:
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚) Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces 2021 Chin. Phys. B 30 110307
|
[1] Ito D, Mori K and Carriere E 1967 Nuovo Cimento A 51 1119 [2] Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817 [3] Strange P 1998 Relativistic Quantum Mechanics (Cambridge: Cambridge University Press) pp. 269-279 [4] Quesne C and Moshinsky M 1990 J. Phys. A 23 2263 [5] Sadurn E, Torres J M and Seligman T H 2010 J. Phys. A 43 285204 [6] de Lange O L 1991 J. Math. Phys. 32 1296 [7] Mandal B P and Verma S 2010 Phys. Lett. A 374 1201 [8] Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617 [9] Romera E 2011 Phys. Rev. A 84 052102 [10] Franco-Villafane J A, Sadurni E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405 [11] Sadurnf E, Seligman T H and Mortessagne F 2010 New. J. Phys. 12 053014 [12] Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801 [13] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [14] Bermudez A, Martin-Delgado M A and Luis A 2008 Phys. Rev. A 77 063815 [15] Sachdev S 2000 Quantum Phase Transitions 2edn. (Springer) p. 5 [16] Hou Y L, Wang Q, Long Z W and Jing J 2015 Int. J. Theor. Phys. 54 1506 [17] Quesne C and Moshinsky M 1990 J. Phys. A: Math. Gen. 23 2263 [18] Benitez J, Romero R P M, Nunez H N and Salas-Brito A L 1990 Phys. Rev. Lett. 64 1643 [19] Song W Y and Zhang F L 2020 Chin. Phys. Lett. 37 050301 [20] Snyder H S 1946 Phys. Rev. 71 38 [21] Connes A, Douglas M and Schwarz A S 1998 J. High Energy Phys. 1998 003 [22] Seiberg N and Witten E 1999 J. High Energy Phys. 1999 032 [23] Douglas M R, Nekrasov N A 2001 Rev. Mod. Phys 73 977 [24] Chu C S and Ho P M 1999 Nucl. Phys. B 550 151 [25] Chu C S and Ho P M 2000 Nucl. Phys. B 568 447 [26] Ardalan H, Arfaei H and Sheikh-Jabbari M M 2000 Nucl. Phys. B 576 578 [27] Jing J and Long Z W 2005 Phys. Rev. D 72 126002 [28] Jing J 2006 Phys. Rev. D 73 086001 [29] Minwalla S, Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys. 2000 020 [30] Van Raamsdonk M and Seiberg N 2000 J. High Energy Phys. 2000 035 [31] Gopakumar R, Minwalla S and Strominger A 2000 J. High Energy Phys. 2000 020 [32] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267 [33] Morariu B and Polychronakos A P 2001 Nucl. Phys. B 610 531 [34] Bellucci S, Nersessian A and Sochichiu C 2001 Phys. Lett. B 522 345 [35] Bellucci S and Nersessian A 2002 Phys. Lett. B 542 295 [36] Karabali D, Nair V P and Polychronakos A P 2002 Nucl. Phys. B 627 565 [37] Morariu B and Polychronakos A P 2002 Nucl. Phys. B 634 326 [38] Muthukumar B and Mitra P 2002 Phys. Rev. D 66 027701 [39] Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Phys. Rev. Lett. 86 2716 [40] Adorno T C, Baldiotti M C, Chaichian M, Gitman D M and Tureanu A 2009 Phys. Lett. B 682 235 [41] Acatrinei C 2001 J. High Energy Phys. 2001 007 [42] Chaichian M, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2002 Phys. Lett. B 527 149 [43] Chaichian M, Demichev A, Presnajder P, Sheikh-Jabbari M M and Tureanu A 2001 Nucl. Phys. B 611 383 [44] Jing J, Liu F H and Chen J F 2008 Phys. Rev. D 78 125004 [45] Bastos C, Bernardini E and Bertolami O 2014 Phys. Rev. D 90 045023 [46] Bastos C, Bernardini A E and Bertolami O 2015 Phys. Rev. D 91 065036 [47] Bastos C, Bernardini A E, Bertolami O, Dias N C and Prata J N 2016 Phys. Rev. D 93 104055 [48] Bertolami O and Queiroz R 2011 Phys. Lett. A 375 4116 [49] Lin B S and Heng T H 2016 Chin. Phys. Lett. 33 110303 [50] Panella1 O and Roy P 2014 Phys. Rev. A 90 042111 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|