Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090303    DOI: 10.1088/1674-1056/23/9/090303
GENERAL Prev   Next  

New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping

Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan
Physics Department, Faculty of Science, I. K. I. University, Qazvin, Iran
Abstract  By introducing thermo-entangled state representation |η>, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using “dissipative interaction picture” we solve the master equation of Jaynes-Cummings model with cavity damping. In addition we derive the Wigner function for density operator when the atom is initially in the up state |↑> and the cavity mode is in coherent state.
Keywords:  Jaynes-Cummings model      entangled state representation      master equations  
Received:  19 December 2013      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Seyed Mahmoud Ashrafi     E-mail:  ashrafi@alm.ikiu.ac.ir

Cite this article: 

Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping 2014 Chin. Phys. B 23 090303

[1] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[2] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University Press)
[3] Lindblad G 1976 Commun Math. Phys. 48 119
[4] Gorini V and Kossakowski S A 1976 J. Math. Phys. 17 821
[5] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley/VCH)
[6] Gerry C and Knight P 2005 Introductory Quantum Optics (New York: Cambridge University Press)
[7] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[8] Walls D F and Milburn G j 1994 Quantum Optics (New York: Springer)
[9] Cahill K and Glauber R 1969 Phys. Rev. 177 1857
[10] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[11] Umezawa H, Matsumoto H and Tachiki M 1982 Thermo Field Dynamics and Condensed State (Amesterdam : North Holland)
[12] Takahashi Y and Umezeawa H 1975 Collect. Phenom. 2 55
[13] Fan H Y and Lu H L 2007 Mod. Phys. Lett. B 21 183
[14] Bazrafkan M R and Ashrafi M 2013 J. Russia Laser. 34 1
[15] Ashrafi S M and Bazrafkan M R 2013 Chin. Phys. Lett. 30 11
[16] Fan H Y and Hu L U 2009 Commun. Theor. Phys. 51 729
[17] Fan H Y and Hu L U 2008 Opt. Commun. 281 5571
[1] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[2] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[3] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[4] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[5] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[6] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[7] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[8] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[9] Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation
M. Mirzaee, M. Batavani. Chin. Phys. B, 2015, 24(4): 040306.
[10] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[11] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
[12] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[13] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[14] Analytical approach to dynamics of transformed rotating-wave approximation with dephasing
M. Mirzaee, N. Kamani. Chin. Phys. B, 2013, 22(9): 094203.
[15] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
No Suggested Reading articles found!