Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094203    DOI: 10.1088/1674-1056/22/9/094203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analytical approach to dynamics of transformed rotating-wave approximation with dephasing

M. Mirzaee, N. Kamani
Department of Physics, Faculty of science, Arak University, Arak 38156-8-8349, Iran
Abstract  We study the dynamics of the Jaynes-Cummings model within transformed rotating-wave approximation (TRWA). We analyze this model coupled to a dephasing reservoir, through the Lindblad formalism in the master equation. Then, we examine the expectation value of the number operator. Finally, we investigate the validity of this model under dephasing using the Mandel parameter and the total number of quanta.
Keywords:  atom-photon interaction      Jaynes-Cummings model      Mandel parameter  
Received:  28 October 2012      Revised:  04 April 2013      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.65.Fd (Algebraic methods)  
Corresponding Authors:  M. Mirzaee     E-mail:  m-mirzaee@araku.ac.ir

Cite this article: 

M. Mirzaee, N. Kamani Analytical approach to dynamics of transformed rotating-wave approximation with dephasing 2013 Chin. Phys. B 22 094203

[1] Schleich W P 2001 Quantum Optic in Phase Space (Berlin: Wiley-VCH Verlag) p. 407
[2] Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) p. 92
[3] Crisp M D 1991 Phys. Rev. A 43 2430
[4] Ford G W and O’Connell R F 1997 Physica A 243 377
[5] Aguilar L M A, de Almeida N G and Villas-Boas C J 2003 Phys. Lett. A 313 257
[6] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p. 158
[7] Werlang T, Dodonov A V, Duzzioni E I and Villas-Bôas C J 2008 Phys. Rev. A 78 053805
[8] Ng K M, Lo C F and Liu K L 1999 Eur. Phys. J. D 6 119
[9] Feranchuk I D, Komarov L I and Ulyanenkov A P 1999 J. Phys. A: Math. Gen. 29 4035
[10] Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 EPL 96 14003
[11] Gan C and Zheng H 2010 Eur. Phys. J. D 59 473
[12] Loudon R 1973 The Quantum Theory of Light (Oxford: Oxford University Press) p. 230
[13] Chen C Y, Li S H and Liu Z L 2006 Commun. Theor. Phys. 45 702
[14] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp. 146-161
[1] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[2] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[3] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[4] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[5] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[6] Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation
M. Mirzaee, M. Batavani. Chin. Phys. B, 2015, 24(4): 040306.
[7] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
[8] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[9] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[10] Quantum correlations between two non-interacting atoms under the influence of a thermal environment
Hu Yao-Hua(胡要花) and Wang Jun-Qiang(王军强) . Chin. Phys. B, 2012, 21(1): 014203.
[11] Properties of field quantum entropy evolution in the Jaynes--Cummings model with initial squeezed coherent states field
Liu Wang-Yun(刘王云), An Yu-Ying(安毓英), and Yang Zhi-Yong(杨志勇). Chin. Phys. B, 2007, 16(12): 3704-3709.
[12] Evolution of field entropy and entanglement in the intensity-dependent two-mode Jaynes-Cummings model
Gao Yun-Feng (高云峰), Feng Jian (冯健), Wang Ji-Suo (王继锁). Chin. Phys. B, 2005, 14(5): 980-984.
[13] Scheme for directly measuring the Wigner characteristic function via the driven Jaynes-Cummings model
Zheng Shi-Biao (郑仕标). Chin. Phys. B, 2004, 13(2): 187-189.
[14] Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms
Dong Chuan-Hua (董传华). Chin. Phys. B, 2003, 12(4): 408-414.
[15] Preparation of entangled squeezed states and quantification of their entanglement
Cai Xin-Hua (蔡新华), Kuang Le-Man (匡乐满). Chin. Phys. B, 2002, 11(9): 876-880.
No Suggested Reading articles found!