|
|
|
Periodic lump, soliton, and some mixed solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equations |
| Xiao-Min Wang(王晓敏)1,2,†, Ji Li(李吉)1,2, and Xiao-Xiao Hu(胡霄骁)3 |
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China; 2 Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, China; 3 Shanxi Chinese Medicine School, Shanxi Health Vocational University, Taiyuan 030012, China |
|
|
|
|
Abstract The (2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper, which describe optical solitons in birefringent fibers. Utilizing the Hirota bilinear method, we system-atically construct single- and double-periodic lump solutions. To provide a detailed insight into the dynamic behavior of the nonlinear waves, we explore diverse mixed solutions, including bright-dark, W-shaped, multi-peak, and bright soliton solutions. Building upon single-periodic lump solutions, we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method. Moreover, we obtain the interaction solutions involving lumps, periodic lumps, and solitons. The interactions among two solitons, multiple lumps, and mixed waves are illustrated and analyzed. Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones. These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.
|
Received: 15 July 2025
Revised: 29 September 2025
Accepted manuscript online: 07 October 2025
|
|
PACS:
|
05.45.Yv
|
(Solitons)
|
| |
02.70.Wz
|
(Symbolic computation (computer algebra))
|
| |
87.10.Ed
|
(Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)
|
|
| Fund: This work was supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 202403021212253 and 202203021221217). |
Corresponding Authors:
Xiao-Min Wang
E-mail: wangxiaomin086@163.com
|
Cite this article:
Xiao-Min Wang(王晓敏), Ji Li(李吉), and Xiao-Xiao Hu(胡霄骁) Periodic lump, soliton, and some mixed solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equations 2025 Chin. Phys. B 34 110502
|
[1] Yang C Y, Liu W J, Zhou Q, et al. 2019 Nonlinear Dyn. 95 369 [2] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909 [3] Som B K, Gupta M R and Dasgupta B 1979 Phys. Lett. A 72 111 [4] Ding C C, Zhou Q and Malomed B A 2025 Phys. Rev. E 111 044203 [5] Zhong Y, Yang D F, Liu Y X, et al. 2025 Chin. Phys. Lett. 42 080002 [6] Zhong Y, Triki H and Zhou Q 2024 Chin. Phys. Lett. 41 070501 [7] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043 [8] Wong P, Liu W J, Huang L G, et al. 2015 Phys. Rev. E 91 033201 [9] Yang W, Cheng X P, Jin G M, et al. 2023 Chin. Phys. B 32 120202 [10] Lan H, Chen F, Komarov A, et al. 2024 Phys. Rev. A 110 053505 [11] Pu H and Bigelow N P 2003 Phys. Rev. Lett. 90 140401 [12] Ajmani M, Singh P and Kaur P 2019 Wireless Pers. Commun. 107 959 [13] Wang M, Xu T, He G L, et al. 2023 Chin. Phys. B 32 050503 [14] Manakov S V, Zakharov V E, Bordag L A, et al. 1977 Phys. Lett. A 63 205 [15] Chen S J, Lv X and Yin Y 2023 Commun. Theor. Phys. 75 055005 [16] An Y N and Guo R 2023 Nonlinear Dyn. 111 18291 [17] Pan Y, Manafian J, Zeynalli S M, et al. 2022 Qual. Theory Dyn. Syst. 21 127 [18] Ying L and Li M 2023 Nonlinear Dyn. 111 15633 [19] Chen J and Pelinovsky D E 2021 Phys. Rev. E 103 062206 [20] Ma Y L and Li B Q 2024 Nonlinear Dyn. 112 2851 [21] Wu Z J and Tian S F 2023 Comput. Simulat. 210 235 [22] Zhang X, Wang L, Liu C, et al. 2020 Chaos 30 113107 [23] Yin Z Y and Tian S F 2021 Physica D 427 133002 [24] Wen S, Manafian J, Sedighi S, et al. 2024 Sci. Rep. 14 19568 [25] Shen S, Jin Y and Zhang J 2014 Rep. Math. Phys. 73 255 [26] Alsufi N A, Fatima N, Noor A, et al. 2023 Chaos Soliton Fract. 170 113410 [27] Zahran E H M and Bekir A 2022 Int. J. Mod. Phys. B 36 2250166 [28] Pang F, Gegen H and Zhao X 2023 Chin. Phys. B 32 050205 [29] Yang S X, Wang Y F and Jia R R 2023 Phys. Scr. 98 125208 [30] Stepanyants Y D, Zakharov D V and Zakharov V E 2022 Radiophys Quant. El. 64 665 [31] Li Y, Yao R, Xia Y, et al. 2021 Commun. Nonlinear Sci. Numer. Simulat. 100 105843 [32] Yao R, Li Y and Lou S 2021 Commun. Nonlinear Sci. Numer. Simulat. 99 105820 [33] Radha R, Vinayagam P S and Porsezian K 2016 Commun. Nonlinear Sci. Numer. Simulat. 37 354 [34] Wang L, Luan Z, Zhou Q, et al. 2021 Nonlinear Dyn. 104 2613 [35] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909 [36] Singh S and Ray S S 2023 Chaos Soliton Fract. 175 113947 [37] Rao J, Mihalache D, He J, et al. 2022 Commun. Nonlinear Sci. Numer. Simulat. 110 106382 [38] Yulin A V and Zezyulin D A 2022 Phys. Rev. E 106 044202 [39] Wang M, Tian B, Qu Q X, et al. 2021 Mod. Phy.s Lett. B 35 2150020 [40] Ding C C, Zhu L W, Triki H, et al. 2024 Physica D 464 134191 [41] Ismael H F 2023 Results Phys. 53 106965 [42] Guan X, Liu W J, Zhou Q, et al. 2020 Appl. Math. Comput. 366 124757 [43] Ma H C, Mao X and Deng A P 2023 Chin. Phys. B 32 060201 [44] Guo F and Lin J 2020 Mod. Phys. Lett. B 34 2050384 [45] Yin Y H, Chen S J and Lv X 2020 Chin. Phys. B 29 120502 [46] Hu X R, Shen S F and Jin Y Y 2019 Appl. Math. Lett. 90 99 [47] Ju Z T, Si Z Z, Yan X, et al. 2024 Chin. Phys. Lett. 41 084203 [48] Si Z Z, Wang D L, Zhu B W, et al. 2024 Laser Photonics Rev. 18 2400097 [49] Si Z Z, Ju Z T, Ren L F, et al. 2025 Laser Photonics Rev. 19 2401019 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|