Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110502    DOI: 10.1088/1674-1056/ae1019
GENERAL Prev   Next  

Periodic lump, soliton, and some mixed solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equations

Xiao-Min Wang(王晓敏)1,2,†, Ji Li(李吉)1,2, and Xiao-Xiao Hu(胡霄骁)3
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;
2 Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, China;
3 Shanxi Chinese Medicine School, Shanxi Health Vocational University, Taiyuan 030012, China
Abstract  The (2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper, which describe optical solitons in birefringent fibers. Utilizing the Hirota bilinear method, we system-atically construct single- and double-periodic lump solutions. To provide a detailed insight into the dynamic behavior of the nonlinear waves, we explore diverse mixed solutions, including bright-dark, W-shaped, multi-peak, and bright soliton solutions. Building upon single-periodic lump solutions, we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method. Moreover, we obtain the interaction solutions involving lumps, periodic lumps, and solitons. The interactions among two solitons, multiple lumps, and mixed waves are illustrated and analyzed. Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones. These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.
Keywords:  nonlinear Schrödinger equations      lump solutions      mixed solutions      Hirota bilinear method  
Received:  15 July 2025      Revised:  29 September 2025      Accepted manuscript online:  07 October 2025
PACS:  05.45.Yv (Solitons)  
  02.70.Wz (Symbolic computation (computer algebra))  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
Fund: This work was supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 202403021212253 and 202203021221217).
Corresponding Authors:  Xiao-Min Wang     E-mail:  wangxiaomin086@163.com

Cite this article: 

Xiao-Min Wang(王晓敏), Ji Li(李吉), and Xiao-Xiao Hu(胡霄骁) Periodic lump, soliton, and some mixed solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equations 2025 Chin. Phys. B 34 110502

[1] Yang C Y, Liu W J, Zhou Q, et al. 2019 Nonlinear Dyn. 95 369
[2] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909
[3] Som B K, Gupta M R and Dasgupta B 1979 Phys. Lett. A 72 111
[4] Ding C C, Zhou Q and Malomed B A 2025 Phys. Rev. E 111 044203
[5] Zhong Y, Yang D F, Liu Y X, et al. 2025 Chin. Phys. Lett. 42 080002
[6] Zhong Y, Triki H and Zhou Q 2024 Chin. Phys. Lett. 41 070501
[7] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043
[8] Wong P, Liu W J, Huang L G, et al. 2015 Phys. Rev. E 91 033201
[9] Yang W, Cheng X P, Jin G M, et al. 2023 Chin. Phys. B 32 120202
[10] Lan H, Chen F, Komarov A, et al. 2024 Phys. Rev. A 110 053505
[11] Pu H and Bigelow N P 2003 Phys. Rev. Lett. 90 140401
[12] Ajmani M, Singh P and Kaur P 2019 Wireless Pers. Commun. 107 959
[13] Wang M, Xu T, He G L, et al. 2023 Chin. Phys. B 32 050503
[14] Manakov S V, Zakharov V E, Bordag L A, et al. 1977 Phys. Lett. A 63 205
[15] Chen S J, Lv X and Yin Y 2023 Commun. Theor. Phys. 75 055005
[16] An Y N and Guo R 2023 Nonlinear Dyn. 111 18291
[17] Pan Y, Manafian J, Zeynalli S M, et al. 2022 Qual. Theory Dyn. Syst. 21 127
[18] Ying L and Li M 2023 Nonlinear Dyn. 111 15633
[19] Chen J and Pelinovsky D E 2021 Phys. Rev. E 103 062206
[20] Ma Y L and Li B Q 2024 Nonlinear Dyn. 112 2851
[21] Wu Z J and Tian S F 2023 Comput. Simulat. 210 235
[22] Zhang X, Wang L, Liu C, et al. 2020 Chaos 30 113107
[23] Yin Z Y and Tian S F 2021 Physica D 427 133002
[24] Wen S, Manafian J, Sedighi S, et al. 2024 Sci. Rep. 14 19568
[25] Shen S, Jin Y and Zhang J 2014 Rep. Math. Phys. 73 255
[26] Alsufi N A, Fatima N, Noor A, et al. 2023 Chaos Soliton Fract. 170 113410
[27] Zahran E H M and Bekir A 2022 Int. J. Mod. Phys. B 36 2250166
[28] Pang F, Gegen H and Zhao X 2023 Chin. Phys. B 32 050205
[29] Yang S X, Wang Y F and Jia R R 2023 Phys. Scr. 98 125208
[30] Stepanyants Y D, Zakharov D V and Zakharov V E 2022 Radiophys Quant. El. 64 665
[31] Li Y, Yao R, Xia Y, et al. 2021 Commun. Nonlinear Sci. Numer. Simulat. 100 105843
[32] Yao R, Li Y and Lou S 2021 Commun. Nonlinear Sci. Numer. Simulat. 99 105820
[33] Radha R, Vinayagam P S and Porsezian K 2016 Commun. Nonlinear Sci. Numer. Simulat. 37 354
[34] Wang L, Luan Z, Zhou Q, et al. 2021 Nonlinear Dyn. 104 2613
[35] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909
[36] Singh S and Ray S S 2023 Chaos Soliton Fract. 175 113947
[37] Rao J, Mihalache D, He J, et al. 2022 Commun. Nonlinear Sci. Numer. Simulat. 110 106382
[38] Yulin A V and Zezyulin D A 2022 Phys. Rev. E 106 044202
[39] Wang M, Tian B, Qu Q X, et al. 2021 Mod. Phy.s Lett. B 35 2150020
[40] Ding C C, Zhu L W, Triki H, et al. 2024 Physica D 464 134191
[41] Ismael H F 2023 Results Phys. 53 106965
[42] Guan X, Liu W J, Zhou Q, et al. 2020 Appl. Math. Comput. 366 124757
[43] Ma H C, Mao X and Deng A P 2023 Chin. Phys. B 32 060201
[44] Guo F and Lin J 2020 Mod. Phys. Lett. B 34 2050384
[45] Yin Y H, Chen S J and Lv X 2020 Chin. Phys. B 29 120502
[46] Hu X R, Shen S F and Jin Y Y 2019 Appl. Math. Lett. 90 99
[47] Ju Z T, Si Z Z, Yan X, et al. 2024 Chin. Phys. Lett. 41 084203
[48] Si Z Z, Wang D L, Zhu B W, et al. 2024 Laser Photonics Rev. 18 2400097
[49] Si Z Z, Ju Z T, Ren L F, et al. 2025 Laser Photonics Rev. 19 2401019
[1] Analytical three-periodic solutions of Korteweg-de Vries-type equations
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2023, 32(9): 090504.
[2] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[3] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[4] Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(6): 060201.
[5] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[6] Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers
Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠). Chin. Phys. B, 2023, 32(12): 120202.
[7] Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
Yarong Xia(夏亚荣), Kaikai Zhang(张开开), Ruoxia Yao(姚若侠), and Yali Shen(申亚丽). Chin. Phys. B, 2023, 32(10): 100201.
[8] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[9] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[10] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[11] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[12] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[13] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[14] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[15] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
No Suggested Reading articles found!