Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110501    DOI: 10.1088/1674-1056/addccf
GENERAL Prev   Next  

Four-body interactions in the long-range Hamiltonian mean-field model

Qiang Zhang(张强), Haojie Luo(罗浩杰), Bingling Cen(岑炳玲), and Yu Xue(薛郁)†
Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China
Abstract  A Hamiltonian mean-field model with long-range four-body interactions is proposed. The model describes a long-range mean-field system in which $N$ unit-mass particles move on a unit circle. Each particle $\theta_{i}$ interacts with any three other particles through an infinite-range cosine potential with an attractive interaction ($\varepsilon > 0$). By applying a method that remaps the average phase of global particle pairs onto a new unit circle, and using the saddle-point technique, the partition function is solved analytically after introducing four-body interactions, yielding expressions for the free energy $f$ and the energy per particle $U$. These results were further validated through numerical simulations. The results show that the system undergoes a second-order phase transition at the critical energy $U_{\rm c}$. Specifically, the critical energy corresponds to $U_{\rm c}=0.32$ when the coupling constant $\varepsilon =5$, and $U_{\rm c}=0.63$ when $\varepsilon =10$. Finally, we calculated the system's largest Lyapunov exponent $\lambda $ and kinetic energy fluctuations $\varSigma $ through numerical simulations. It is found that the peak of the largest Lyapunov exponent $\lambda $ occurs slightly below the critical energy $U_{\rm c}$, which is consistent with the point of maximum kinetic energy fluctuations $\varSigma $. And there is a scaling law of $\varSigma /N^{1/2}\propto \lambda $ between them.
Keywords:  long-range interactions      equilibrium statistical mechanics      Hamiltonian meanfield      Lyapunov exponents  
Received:  10 March 2025      Revised:  19 May 2025      Accepted manuscript online:  26 May 2025
PACS:  05.20.-y (Classical statistical mechanics)  
  05.70.Fh (Phase transitions: general studies)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11962002) and the Innovation Project of the Guangxi Graduate Education (Grant Nos. YCBZ2021021 and YCSW2022070).
Corresponding Authors:  Yu Xue     E-mail:  yuxuegxu@gxu.edu.cn
About author:  2025-110501-250391.pdf

Cite this article: 

Qiang Zhang(张强), Haojie Luo(罗浩杰), Bingling Cen(岑炳玲), and Yu Xue(薛郁) Four-body interactions in the long-range Hamiltonian mean-field model 2025 Chin. Phys. B 34 110501

[1] Dauxois T, Ruffo S, Arimondo E and Wilkens M (eds.) 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions (Berlin: Springer) p. 165
[2] Dauxois T, Ruffo S, Arimondo E and Wilkens M (eds.) 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions (Berlin: Springer) p. 208
[3] Dauxois T, Ruffo S, Arimondo E and Wilkens M (eds.) 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions (Berlin: Springer) p. 437
[4] Kruse D, Ruder M, Benhelm J, et al. 2003 Phys. Rev. A 67 051802
[5] Miceli F, Baldovin M and Vulpiani A 2019 Phys. Rev. E 99 042152
[6] Vallejos O and Anteneodo C 2004 Physica A 340 178
[7] Bagchi D 2017 Phys. Rev. E 95 032102
[8] Anteneodo C 2004 Physica A 342 112
[9] Defenu N, Trombettoni A and Codello A 2015 Phys. Rev. E 92 052113
[10] Uhrich P, Defenu N, Jafari R and Halimeh J C 2020 Phys. Rev. B 101 245148
[11] Antoni M and Ruffo S 1995 Phys. Rev. E 52 2361
[12] Campa A, Dauxois T and Ruffo S 2009 Phys. Rep. 480 57
[13] Andreucci F, Lepri S, Ruffo S and Trombettoni A 2022 SciPost Phys. Core 5 036
[14] Defenu N, Donner T, Macrí T, et al. 2023 Rev. Mod. Phys. 95 035002
[15] Maciel J M, Firpo M C and Amato M A 2015 Physica A 424 34
[16] Latora V, Rapisarda A and Ruffo S 1999 Physica D 131 38
[17] Tamarit F and Anteneodo C 2000 Phys. Rev. Lett. 84 208
[18] Dauxois T, Ruffo S, Arimondo E and Wilkens M (eds.) 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions (Berlin: Springer) p. 45
[19] Campa A, Giansanti A and Moroni D 2002 Chaos, Solitons and Fractals 13 407
[20] Drell S D and Huang K 1953 Phys. Rev. 91 1527
[21] Ashwin P and Rodrigues A 2016 Physica D 325 14
[22] León I and Pazó D 2019 Phys. Rev. E 100 012211
[23] Martens E A, Bick C and Panaggio M J 2016 Chaos 26 094819
[24] Salnikov V, Cassese D and Lambiotte R 2019 Eur. J. Phys. 40 014001
[25] Campa A, Giansanti A and Moroni D 2003 J. Phys. A: Math. Gen. 36 6897
[26] Yoshida H 1990 Phys. Lett. A 150 262
[27] McLachlan I and Atela P 1992 Nonlinearity 5 541
[28] Latora V, Rapisarda A and Ruffo S 1998 Phys. Rev. Lett. 80 692
[29] Benettin G, Galgani L and Strelcyn J M 1976 Phys. Rev. A 14 2338
[30] Firpo M C 1998 Phys. Rev. E 57 6599
[1] Associated network family of the unified piecewise linear chaotic family and their relevance
Haoying Niu(牛浩瀛) and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(4): 040503.
[2] $(\mathcal{PT})$-symmetry phase transition in a bipartite lattice with long-range interactions
Dapeng Zheng(郑大鹏), Siwu Li(李思吾), and Zeliang Xiang(项泽亮). Chin. Phys. B, 2025, 34(11): 110305.
[3] A novel chaotic system with one source and two saddle-foci in Hopfield neural networks
Chen Peng-Fei(陈鹏飞), Chen Zeng-Qiang(陈增强), and Wu Wen-Juan(吴文娟). Chin. Phys. B, 2010, 19(4): 040509.
[4] Nonlinear feedback control of a novel hyperchaotic system and its circuit implementation
Wang Hao-Xiang(汪浩祥), Cai Guo-Liang(蔡国梁), Miao Sheng(缪盛), and Tian Li-Xin(田立新). Chin. Phys. B, 2010, 19(3): 030509.
[5] A novel one equilibrium hyper-chaotic system generated upon Lü attractor
Jia Hong-Yan(贾红艳), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2010, 19(2): 020507.
[6] Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system
Gu Qiao-Lun(顾巧论) and Gao Tie-Gang(高铁杠). Chin. Phys. B, 2009, 18(1): 84-90.
[7] A new hyperchaotic system and its linear feedback control
Cai Guo-Liang (蔡国梁), Zheng Song (郑松), Tian Li-Xin (田立新). Chin. Phys. B, 2008, 17(11): 4039-4046.
[8] Global vector-field reconstruction of nonlinear dynamical systems from a time series with SVD method and validation with Lyapunov exponents
Liu Wei-Dong (刘卫东), K. F. Ren, S. Meunier-Guttin-Cluzel, G. Gouesbet. Chin. Phys. B, 2003, 12(12): 1366-1373.
No Suggested Reading articles found!