Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120202    DOI: 10.1088/1674-1056/acf282
GENERAL Prev   Next  

Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers

Wei Yang(杨薇)1, Xueping Cheng(程雪苹)2,†, Guiming Jin(金桂鸣)1, and Jianan Wang(王佳楠)1
1 School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China;
2 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract  We derive the multi-hump nondegenerate solitons for the (2+1)-dimensional coupled nonlinear Schrödinger equations with propagation distance dependent diffraction, nonlinearity and gain (loss) using the developing Hirota bilinear method, and analyze the dynamical behaviors of these nondegenerate solitons. The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers, varying diffraction and nonlinearity parameters. In addition, when all the variable coefficients are chosen to be constant, the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons. Finally, it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
Keywords:  nondegenerate solitons      variable coefficients coupled nonlinear Schrödinger equations      Hirota bilinear method  
Received:  30 June 2023      Revised:  20 August 2023      Accepted manuscript online:  22 August 2023
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208), the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015), and the Training Program for Leading Talents in Universities of Zhejiang Province.
Corresponding Authors:  Xueping Cheng     E-mail:  chengxp2005@126.com

Cite this article: 

Wei Yang(杨薇), Xueping Cheng(程雪苹), Guiming Jin(金桂鸣), and Jianan Wang(王佳楠) Nondegenerate solitons of the (2+1)-dimensional coupled nonlinear Schrödinger equations with variable coefficients in nonlinear optical fibers 2023 Chin. Phys. B 32 120202

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[3] Mollenauer L F and Smith K 1988 Opt. Lett. 13 675
[4] Hasegawa A 1984 Appl. Opt. 23 3302
[5] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon Press)
[6] Dauxois T and Peyrard M 2006 Physics of Solitons (New York: Cambridge University Press)
[7] Agrawal G P 2007 Nonlinear Fiber Optics (San Diego, CA: Academic Press)
[8] Akhmediev N N and Ankiewicz A 2010 Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer-Verlag)
[9] Porsezian K and Kuriakose V 2003 Optical Solitons: Theoretical and Experimental Challenges (Berlin: Springer-Verlag)
[10] Akhmediev N and Ankiewicz A 2000 Chaos 10 600
[11] Stalin S, Ramakrishnan R, Senthilvelan M and Lakshmanan M 2019 Phys. Rev. Lett. 122 043901
[12] Che W J, Liu C and Akhmediev N 2023 Phys. Rev. E 107 054206
[13] Liu C, Chen S C, Yao X and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[14] Chen S C, Liu C and Akhmediev N 2023 Phys. Rev. A 107 063507
[15] Ramakrishnan R, Stalin S and Lakshmanan M 2020 Phys. Rev. E 102 042212
[16] Cai Y J, Wu J W and Lin J 2022 Chaos Solitons Fractals 164 112657
[17] Qin Y H, Zhao L C and Ling L M 2019 Phy. Rev. E 100 022212
[18] Geng K L, Mou D S and Dai C Q 2023 Nonlinear Dyn. 111 603
[19] Chen X, Mihalache D and Rao J G 2023 Nonlinear Dyn. 111 697
[20] Stalin S, Ramakrishnan R and Lakshmanan M 2020 Phys. Lett. A 384 126201
[21] Cai Y J, Wu J W, Hu L T and Lin J 2021 Phys. Scr. 96 095212
[22] Mou D S and Dai C Q 2022 Appl. Math. Lett. 133 108230
[23] Stalin S, Ramakrishnan R and Lakshmanan M 2022 Phys. Rev. E 105 044203
[24] Zhang C R, Tian B, Qu Q X, Liu L and Tian H Y 2020 Z. Angew. Math. Phys. 71 18
[25] Liu C, Chen S C, Yao X K and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[26] Zhang G Q, Yan Z Y, Wen X Y and Chen Y 2017 Phys. Rev. E 95 042201
[27] Song S, Xue H and Xue Y K 2020 Commu. Nonlinear Sci. Numer. Simulat. 82 105046
[28] Baronio F, Wabnitz S and Kodama Y 2016 Phys. Rev. Lett. 116 173901
[29] Riaz H and Wajahat A 2019 Eur. Phys. J. Plus 134 222
[30] Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E 93 062217
[31] Wu G Z and Dai C Q 2020 Appl. Math. Lett. 106 106365
[32] Silem A and Lin J 2023 Appl. Math. Lett. 135 108397
[33] Gao Z Y, Song S N, Zhang K and Guo X J 2017 Optik 147 306
[34] Manikandan K, Senthilvelan M and Kraenkel R A 2016 Eur. Phys. J. B 89 218
[35] Xie X Y, Tian B, Sun W R and Sun Y 2015 Commu. Nonlinear Sci. Numer. Simulat. 29 300
[36] Wu H Y and Jiang L H 2019 Nonlinear Dyn. 95 3401
[37] Gao Z Y, Song S N and Duan J 2018 Optik 172 953
[38] Hirota R 1973 J. Math. Phys. 14 805
[39] Yin K H, Cheng X P and Lin J 2021 Chin. Phys. Lett. 38 080201
[1] Analytical three-periodic solutions of Korteweg-de Vries-type equations
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2023, 32(9): 090504.
[2] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[3] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[4] Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(6): 060201.
[5] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[6] Trajectory equation of a lump before and after collision with other waves for generalized Hirota-Satsuma-Ito equation
Yarong Xia(夏亚荣), Kaikai Zhang(张开开), Ruoxia Yao(姚若侠), and Yali Shen(申亚丽). Chin. Phys. B, 2023, 32(10): 100201.
[7] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[8] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[9] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[10] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[11] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[12] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[13] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[14] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[15] Superposition solitons in two-component Bose-Einstein condensates
Wang Xiao-Min (王晓敏), Li Qiu-Yan (李秋艳), Li Zai-Dong (李再东). Chin. Phys. B, 2013, 22(5): 050311.
No Suggested Reading articles found!