Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110701    DOI: 10.1088/1674-1056/adfc43
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Improved physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization

Chenghui Yang(杨程晖)1, Minglei Shan(单鸣雷)1,†, Mengyu Feng(冯梦宇)1, Ling Kuai(蒯玲)1, Yu Yang(杨雨)2, Cheng Yin(殷澄)1, and Qingbang Han(韩庆邦)1
1 College of Information Science and Engineering, Hohai University, Changzhou 213200, China;
2 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
Abstract  Physics-informed neural networks (PINNs) have shown considerable promise for performing numerical simulations in fluid mechanics. They provide mesh-free, end-to-end approaches by embedding physical laws into their loss functions. However, when addressing complex flow problems, PINNs still face some challenges such as activation saturation and vanishing gradients in deep network training, leading to slow convergence and insufficient prediction accuracy. We present physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization (T-PINN-LBM) to address these challenges. This approach fuses the mesoscopic lattice Boltzmann model with the automatic differentiation framework of PINNs. It also implements a tanh robust weight initialization method derived from fixed point analysis. This model effectively mitigates activation and gradient decay in deep networks, improving convergence speed and data efficiency in multiscale flow simulations. We validate the effectiveness of the model on the classical arithmetic example of lid-driven cavity flow. Compared to the traditional Xavier initialized PINN and PINN-LBM, T-PINNLBM reduces the mean absolute error (MAE) by one order of magnitude at the same network depth and maintains stable convergence in deeper networks. The results demonstrate that this model can accurately capture complex flow structures without prior data, providing a new feasible pathway for data-free driven fluid simulation.
Keywords:  lattice Boltzmann method      physical-informed neural networks      fluid mechanics      tanh robust weight initialization  
Received:  18 June 2025      Revised:  22 July 2025      Accepted manuscript online:  18 August 2025
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.30.Jr (Partial differential equations)  
  84.35.+i (Neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474453, 12174085, and 12404530).
Corresponding Authors:  Minglei Shan     E-mail:  shanml@hhu.edu.cn

Cite this article: 

Chenghui Yang(杨程晖), Minglei Shan(单鸣雷), Mengyu Feng(冯梦宇), Ling Kuai(蒯玲), Yu Yang(杨雨), Cheng Yin(殷澄), and Qingbang Han(韩庆邦) Improved physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization 2025 Chin. Phys. B 34 110701

[1] Zienkiewicz O C and Taylor R L 2013 Finite Element Method (Oxford: Amsterdam Butterworth-Heinemann Press) pp. 705–714
[2] Liu Y Q, Cheng R J and Ge H X 2013 Chin. Phys. B 22 100204
[3] Cardiff P and Demirdzic I 2021 Arch. Comput. Meth. Engin. 28 3721
[4] Raissi M, Perdikaris P and Karniadakis G E 2018 J. Comput. Phys. 378 686
[5] Mao Z P, Jagtap A D and Karniadakis G E 2020 Comput. Meth. Appl. Mech. Engin. 360 112789
[6] Shukla K, Leoni D and Karniadakis G E 2020 J. Nondest. Eval. 39 61
[7] Lu L, Jin P Z, Pang G F, Zhang Z Q and Karniadakis G E 2021 Nat. Mach. Intell. 3 218
[8] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S F and Yang L 2021 Nat. Rev. Phys. 3 422
[9] Yin M L, Zheng X N, Humphrey J and Karniadakis G E 2021 Comput. Meth. Appl. Mech. Engin. 375 113603
[10] Bararnia H and Esmaeilpour M 2022 Inter. Com. Heat. Mass Tran. 132 105890
[11] Cuomo S, Di C, Vincenzo S, Giampaolo F, Rozza G, Raissi M and Piccialli F 2022 J. Sci. Comput. 92 88
[12] Hanna J M, Aguado J, Askri R and Borzacchiello D 2022 Comput. Meth. Appl. Mech. Engin. 396 115100[13] Hosseini V R, Mehrizi A, Gungor A and Afrouzi H 2023 Fuel 332 125908
[14] Zhu J A, Xue Y H and Liu Z S 2024 Appl. Math. Mech. 45 1685
[15] Liu J N, Hou Q Z,Wei J G and Sun ZW2023 Chin. Phys. B 32 070702
[16] ZhaWS, Chen D S, Li D L, Shen L H and Chen E Y 2025 Chin. Phys. B 34 040701
[17] Chen S Y and Doolen G D 2003 Annu. Rev. Flu. Mech. 30 329
[18] Lou Q, Meng X H and Karniadakis G E 2021 J. Comput. Phys. 447 110676
[19] Liu Z X, Chen Y, Song G, Song W and Xu J 2023 Mathematics 11 4147
[20] Fang D H, Tan J F and Xu J 2022 Oce. Engin. 263 112360
[21] Qian Y H, Humieres D and Lallemand P 1992 Europhys. Lett. 17 479
[22] He X Y and Luo L S 1997 Phys. Rev. E 55 R6333
[23] Luo L S and Girimaji S 2003 Phys. Rev. E. 67 036302
[24] Boon J P 2003 Euro. J. Mech. Fluids. 22 101
[25] Lee H, Choi H and Kim H 2025 arXiv:2410.02242 [cs.LG]
[26] Kingma D and Ba J 2014 arXiv:1412.6980v9 [cs.LG]
[27] Li Y F, Shi Q Z, Li Y, Song X J, Liu C C and Wang W Q 2021 Chin. Phys. B 30 014302
[28] Wang S F, Teng Y J and Perdikaris P 2021 SIAM J. Sci. Comput. 43 A3055
[29] Chiu P,Wong J C, Ooi C, DaoMand Ong Y 2022 Comput. Meth. Appl. Mech. Engin. 395 114909
[1] Motion of a rigid particle in the lid-driven cavity flow
Fan Yang(杨帆), Zhe Yan(闫喆), Wencan Wang(汪文灿), and Ren Shi(施任). Chin. Phys. B, 2025, 34(3): 034701.
[2] Morphological analysis for thermodynamics of cavitation collapse near fractal solid wall
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), and Qingbang Han(韩庆邦). Chin. Phys. B, 2024, 33(6): 064701.
[3] On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method
Fan Yang(杨帆), Hu Jin(金虎), and Mengyao Dai(戴梦瑶). Chin. Phys. B, 2024, 33(6): 064702.
[4] Passive particles driven by self-propelled particle: The wake effect
Kai-Xuan Zheng(郑凯选), Jing-Wen Wang(汪静文), Shi-Feng Wang(王世锋), and De-Ming Nie(聂德明). Chin. Phys. B, 2024, 33(4): 044501.
[5] Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow
Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(张雅瑾), and Xun Zhou(周训). Chin. Phys. B, 2023, 32(9): 094702.
[6] Application of shifted lattice model to 3D compressible lattice Boltzmann method
Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静). Chin. Phys. B, 2023, 32(9): 094701.
[7] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[8] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[9] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[10] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[11] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[12] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[13] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[14] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[15] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
No Suggested Reading articles found!