Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060201    DOI: 10.1088/1674-1056/acb91c
GENERAL   Next  

Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation

Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平)
Department of Applied Mathematics, Donghua University, Shanghai 201620, China
Abstract  Based on the Hirota bilinear method, the second extended (3+1)-dimensional Jimbo-Miwa equation is established. By Maple symbolic calculation, lump and lump-kink soliton solutions are obtained. The interaction solutions between the lump and multi-kink soliton, and the interaction between the lump and triangular periodic soliton are derived by combining a multi-exponential function or trigonometric sine and cosine functions with quadratic functions. Furthermore, periodic-lump wave solution is derived via the ansatz including hyperbolic and trigonometric functions. Finally, 3D plots, 2D curves, density plots, and contour plots with particular choices of the suitable parameters are depicted to illustrate the dynamical features of these solutions.
Keywords:  Hirota bilinear method      second extended (3+1)-dimensional Jimbo-Miwa equation      lump solution      interaction solution  
Received:  08 December 2022      Revised:  16 January 2023      Accepted manuscript online:  06 February 2023
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  04.20.Jb (Exact solutions)  
  04.30.Nk (Wave propagation and interactions)  
Corresponding Authors:  Hongcai Ma, Xue Mao     E-mail:  hongcaima@hotmail.com;maoxue990420@163.com

Cite this article: 

Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平) Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation 2023 Chin. Phys. B 32 060201

[1] Li J H and Li B2022 Chaos Solitons Fractals 164 112712
[2] Li J H, Chen J C and Li B2022 Nonlinear Dyn. 107 781
[3] Ma H C, Ni K, Ruan G D and Deng A P2016 Therm. Sci. 20 875
[4] Hosseini K, Mirzazadeh M, Aligoli M, Eslami M and Liu J G2020 Math. Model. Nat. Phenom. 15 61
[5] Zhou J, Zhou R and Zhu S2020 Chaos Solitons Fractals 141 110419
[6] Peng W Q, Tian S F, Zhang T T and Fang Y2019 Math. Methods Appl. Sci. 42 6865
[7] Lou, S Y2020 Chin. Phys. B 29 080502
[8] Ma H C, Ge D J and Yu Y D2008 Chin. Phys. B 17 4344
[9] Yu Y and Ma H C 2010 Appl. Math. Comput. 215 3534
[10] Ma W X2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355
[11] Guo H D, Xia T C and Hu B B2020 Nonlinear Dyn. 100 601
[12] Ma H C, Bai Y Q and Deng A P2020 Math. Methods Appl. Sci. 43 7135
[13] Ma H C, Yue S P and Deng A P2022 Mod. Phys. Lett. B 36 2250069
[14] Yamaleev R M2014 Indian J. Pure Appl. Math. 45 165
[15] Alquran M and Al-Omary R 2012 Int. J. Nonlinear Sci. 14 150
[16] Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B1977 Phys. Lett. A 63 205
[17] Ma H C and Deng A P2016 Commun. Theor. Phys. 65 546
[18] Gilson C R and Nimmo J J C1990 Phys. Lett. A 147 472
[19] Yang J Y and Ma W X2016 Int. J. Mod. Phys. B 30 1640028
[20] Guo D, Tian S F, Wang X B and Zhang T T2019 East Asian J. Appl. Math. 9 780
[21] Imai K1997 Prog. Theor. Phys. 98 1013
[22] Imai K and Nozaki K1996 Prog. Theor. Phys. 96 521
[23] Zhang Y, Dong H, Zhang X and Yang H2017 Comput. Math. Appl. 73 246
[24] Ma H C, Ni K and Deng A2017 Therm. Sci. 21 1765
[25] Gu J, Zhang Y and Dong H2018 Comput. Math. with Appl. 76 1408
[26] Wazwaz A M 2021 Int. J. Numer. Methods H 32 138
[27] Yusuf A and Sulaiman T A2021 Commun. Nonlinear Sci. Numer. Simul. 99 105846
[28] Chen M D, Li X, Wang Y and Li B2017 Commun. Theor. Phys. 67 595
[29] Dai Z D, Lin S Q, Fu H M and Zeng X P 2010 Appl. Math. Comput. 216 1599
[30] Liu J G, Du J Q, Zeng Z F and Nie B2017 Nonlinear Dyn. 88 655
[31] Fang T and Wang Y H2018 Comput. Math. with Appl. 76 1476
[32] Liu J G, Wazwaz A M and Zhu W H 2022 J. Appl. Anal. Comput. 12 517
[33] Wang C J, Dai Z D and Liu C F2016 Mediterr. J. Math. 13 1087
[34] Zhang Z, Yang X and Li B2020 Nonlinear Dyn. 100 1551
[35] Ma H C, Gao Y D and Deng A P2022 Nonlinear Dyn. 108 4123
[36] Dorizzi B, Grammaticos B, Ramani A and Winternitz P1986 J. Math. Phys. 27 2848
[37] Jimbo M and Miwa T1983 Publ. RRIMS Kyoto Univ. 19 943
[38] Wazwaz A M2017 Appl. Math. Lett. 64 21
[39] Sun H Q and Chen A H2017 Appl. Math. Lett. 68 55
[40] Manafian J2018 Comput. Math. with Appl. 76 1246
[41] Ali K K, Nuruddeen R I and Hadhoud A R2018 Results Phys. 9 12
[42] Li H and Li Y Z2018 Appl. Math. Comput. 333 369
[43] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[1] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[2] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[3] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[4] Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves
Zhonglong Zhao(赵忠龙), Lingchao He(和玲超), and Abdul-Majid Wazwaz. Chin. Phys. B, 2023, 32(4): 040501.
[5] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[8] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[9] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[10] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[11] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[12] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[13] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[14] Lump and interaction solutions to the (3+1)-dimensional Burgers equation
Jian Liu(刘健), Jian-Wen Wu(吴剑文). Chin. Phys. B, 2020, 29(3): 030201.
[15] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
No Suggested Reading articles found!