Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 114402    DOI: 10.1088/1674-1056/addcbc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Finite element analysis of copper nanoparticles in Boger fluid: Effects of dynamic inter-particle spacing, nanolayer thermal conductivity, nanoparticles diameter, and thermal radiation over a stretching sheet

Qadeer Raza1,†, Xiaodong Wang(王晓东)1,2,‡, Tahir Mushtaq3, Bagh Ali4,†, and Nehad Ali Shah5
1 School of Mathematics and Statistics, Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Northwestern Polytechnical University, Xi'an 710129, China;
2 Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, China;
3 Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
4 Department of Mathematical Sciences, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamilnadu, India;
5 Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
Abstract  This study explores the magnetohydrodynamic (MHD) boundary layer flow of a water-based Boger nanofluid over a stretching sheet, with particular focus on the influences of nanoparticle diameter, nanolayer effects, and thermal radiation. The primary aim is to examine how variations in nanoparticle size and nanolayer thickness affect the hydrothermal behavior of the nanofluid. The model also incorporates the contributions of viscous dissipation and Joule heating within the heat transfer equation. The governing momentum and energy equations are converted into dimensionless partial differential equations (PDEs) using appropriate similarity variables and are numerically solved using the finite element method (FEM) implemented in MATLAB. Extensive validation of this method confirms its reliability and accuracy in numerical solutions. The findings reveal that increasing the diameter of copper nanoparticles significantly enhances the velocity profile, with a more pronounced effect observed at wider inter-particle spacings. A higher solvent volume fraction leads to decreased velocity and temperature distributions, while a greater relaxation time ratio improves velocity and temperature profiles due to the increased elastic response of the fluid. Moreover, enhancements in the magnetic parameter, thermal radiation, and Eckert number lead to an elevation in temperature profiles. Furthermore, higher nanolayer thickness reduces the temperature profile, whereas particle radius yields the opposite outcome.
Keywords:  finite element method      Boger nanofluid      thermal radiation      nanoparticles diameter      nanolayer thermal conductivity      inter-particle spacing  
Received:  17 January 2025      Revised:  25 April 2025      Accepted manuscript online:  23 May 2025
PACS:  44.40.+a (Thermal radiation)  
  44.30.+v (Heat flow in porous media)  
  47.11.Fg (Finite element methods)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. D5000230061) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011192).
Corresponding Authors:  Xiaodong Wang     E-mail:  xiaodongwang@nwpu.edu.cn

Cite this article: 

Qadeer Raza, Xiaodong Wang(王晓东), Tahir Mushtaq, Bagh Ali, and Nehad Ali Shah Finite element analysis of copper nanoparticles in Boger fluid: Effects of dynamic inter-particle spacing, nanolayer thermal conductivity, nanoparticles diameter, and thermal radiation over a stretching sheet 2025 Chin. Phys. B 34 114402

[1] Choi S U and Eastman J A 1995 Argonne National Laboratory, Argonne, IL, USA Oct.
[2] Awan A U, Shah S A and Ali B 2022 Chin. J. Phys. 77 2795
[3] Khan Z H, Swain K, Ibrahim S M, Khan W A and Huang Z 2024 Alex. Eng. J. 108 122
[4] Reddy Y D and Goud B S 2022 J. Therm. Anal. Calorim. 147 11991
[5] Khan K A, Vivas-Cortez M, Ishfaq K, Javed M F, Raza N, Nisar K S and Abdel-Aty A H 2024 Results Phys. 60 107635
[6] Lanjwani H B, Anwar M I, Wahab A, Shehzad S A and Arshad M 2022 Mater. Sci. Eng. B 286 116076
[7] Venkatesh N, Srinivasa Raju R, Anil Kumar M and Vijayabhaskar C 2023 Int. J. Model. Simul. 41 1
[8] Gupta M, Singh V, Kumar R and Said Z 2017 Renew. Sustain. Energy Rev. 74 638
[9] Yang L, Ji W, Huang J N and Xu G 2019 J. Mol. Liq. 296 111780
[10] Maxwell J C 1988 A Treatise on Electricity and Magnetism: Pt. Ⅲ. Magnetism. Pt. IV. Electromagnetism (Oxford: Clarendon Press) Vol. 2
[11] Tarakaramu N, Narayana P S and Venkateswarlu B 2020 Nonlinear Eng. 9 233
[12] Uddin Z, Vishwak K S and Harmand S 2021 Chin. J. Phys. 73 442
[13] Dzulkifli N F, Bachok N, Yacob N A, Pop I, Arifin N and Rosali H 2022 CFD Lett. 14 66
[14] Imtiaz M, Khan M I, Akermi M and Hejazi H A 2024 J. Magn. Magn. Mater. 589 171613
[15] Shahzad A, Liaqat F, Ellahi Z, Sohail M, Ayub M and Ali M R 2022 Sci. Rep. 12 14254
[16] Gireesha B J, Pavithra C G and Sushma 2024 Int. J. Model. Simul. 42 1
[17] Naseem T and Shahzad A 2023 Numer. Heat Transfer, Part A Appl. 84 1
[18] Hamilton R L and Crosser O K 1962 Ind. Eng. Chem. 3 187
[19] Jiang H, Xu Q and Huang C 2014 Appl. Phys. A 118 197
[20] Areekara S, Sabu A S, Mathew A and Saravanan B 2021 Heat Transfer 50 6680
[21] Hayat T, Khan S A, Alsaedi A and Zai Q Z 2020 Int. Commun. Heat Mass Transfer 118 104881
[22] Mahabaleshwar U S, Sneha K N and Huang H N 2022 J. Taiwan Inst. Chem. Eng. 134 104298
[23] Xue Q Z 2003 Phys. Lett. A 307 313
[24] Murshed S M, Leong K C and Yang C 2008 Int. J. Therm. Sci. 47 560
[25] Pan F, Ali B, Siddique I, Ali R, Khan S A, Hussein A K and Yang H 2025 Chaos, Solitons and Fractals 191 115908
[26] Raza Q, Wang X, Qureshi M Z, Eldin S M, Abd Allah A M, Ali B and Siddique I 2023 Case Stud. Therm. Eng. 45 102958
[27] Qureshi M Z, Bilal S, Chu Y M and Farooq A B 2021 J. Mol. Liq. 325 115211
[28] Shah I A, Bilal S, Akgul A, Tekin M T, Botmart T, Zahran H Y and Yahia I S 2022 Alex. Eng. J. 61 11737
[29] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[30] Mohana C M and Rushi Kumar B 2024 Int. J. Mod. Phys. B 38 2450151
[31] Zeeshan A, Khalid N, Ellahi R, Khan M I and Alamri S Z 2024 Chaos, Solitons and Fractals 189 115600
[32] Mahabaleshwar U S, Sneha K N, Chan A and Zeidan D 2022 Int. Commun. Heat Mass Transfer 135 106080
[33] Balamurugan R and Vanav Kumar A 2024 Heat Transfer 53 584
[34] Mukhtar T, Jamshed W, Aziz A and Al-Kouz W 2023 Numer. Methods Partial Differ. Equ. 39 3499
[35] Shah Z, Dawar A, Islam S, Alshehri A and Alrabaiah H 2024 Waves Random Complex Media 34 5172
[36] Benal S S, Tawade J V, Biradar M M and Allasi H L 2022 Math. Probl. Eng. 2022 7326504
[37] Khan Z H, Swain K, Ibrahim S M, Khan W A and Huang Z 2024 Alex. Eng. J. 108 122
[38] Jamshed W, Goodarzi M, Prakash M, Nisar K S, Zakarya M and AbdelAty A H 2021 Case Stud. Therm. Eng. 26 101160
[39] Koli C M and Salunkhe S N 2023 J. Comput. Appl. Mech. 54 111
[40] Ghosh S and Mukhopadhyay S 2024 Waves Random Complex Media 34 2637
[41] Shamshuddin M D, Gamar F, Ram M S and Salawu S O 2024 Int. J. Model. Simul. 43 1
[42] Ghasemi S E, Mohsenian S, Gouran S and Zolfagharian A 2022 Results Phys. 32 105141
[43] Swain K, Ibrahim S M, Dharmaiah G and Noeiaghdam S 2023 Results Eng. 19 101208
[44] Graham A L 1981 Appl. Sci. Res. 37 275
[45] Gosukonda S, Gorti V P N S, Baluguri S B and Sakam S R 2015 Procedia Eng. 127 263
[46] Ali N, Nazeer M, Javed T and Razzaq M 2019 Eur. Phys. J. Plus 134 2
[47] Raza Q, Wang X, Ali B, Li S, Shah N A and Yang H 2025 Chaos, Solitons and Fractals 190 115758
[48] Ibrahim W 2017 J. Braz. Soc. Mech. Sci. Eng. 39 791
[49] Khan R M, Ashraf W, Sohail M, Yao S W and Al-Kouz W 2020 Complexity 2020 8885749
[50] Dawar A, Shah Z, Tassaddiq A, Islam S and Kumam P 2021 Case Stud. Therm. Eng. 25 100870
[1] Cattaneo-Christov heat transfer model for tangent hyperbolic fluid with Thompson-Torian slip and melting effects
Anwar Saeed and Afrah Al-Bossly. Chin. Phys. B, 2025, 34(9): 094404.
[2] Performance analysis of porous solar absorbers with high-temperature radiation cooling function
Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里·海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉). Chin. Phys. B, 2025, 34(6): 068102.
[3] Experimental study on the regulation of radiative heat flux by coating SiC film
Haifeng Xia(閤海峰) and Huihui Sun(孙慧慧). Chin. Phys. B, 2025, 34(5): 054402.
[4] A program for modeling the RF wave propagation of ICRF antennas utilizing the finite element method
Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), Ming-Yue Han(韩明月), and Quan-Zhi Zhang(张权治). Chin. Phys. B, 2025, 34(4): 045201.
[5] Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation, energy omission
Saleem Nasir, Sekson Sirisubtawee, Pongpol Juntharee, and Taza Gul. Chin. Phys. B, 2024, 33(5): 050204.
[6] Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles
Yang-Chun Zhao(赵洋春) and Yong-Min Zhou(周勇敏). Chin. Phys. B, 2023, 32(11): 114401.
[7] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[8] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[9] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[10] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[11] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[14] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[15] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
No Suggested Reading articles found!