Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107802    DOI: 10.1088/1674-1056/adf5a7
RAPID COMMUNICATION Prev   Next  

Magnetic-field-induced photoluminescence enhancement in type-I quantum wells: A quantitative probe for interface flatness

Jun Shao(邵军)1,2,†, Man Wang(王嫚)1,3, Xiren Chen(陈熙仁)4,5,‡, Liangqing Zhu(朱亮清)6, F. X. Zha(查访星)7, H. Zhao8, Shumin Wang(王庶民)8,§, and Wei Lu(陆卫)1,2
1 State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 National Key Laboratory of Infrared Detection Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
5 Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
6 Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China;
7 Physics Department, Shanghai University, Shanghai 200444, China;
8 Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 G?teborg, Sweden
Abstract  Interfacial disorders in semiconductor quantum wells (QWs) determine material properties and device performance and have attracted great research efforts using different experimental methods. However, so far, there has been no way to quantify the lateral length distribution of the interfacial disorders in QWs. Since photoluminescence (PL) is sensitive to exciton localization, the evolutions of PL energy and linewidth under external perpendicular magnetic fields have served as effective measurement methods for QW analysis; however, the evolution of PL intensity has not played a matching role. In this paper, we develop a theoretical model correlating the PL intensity with the interfacial disorders of type-I QWs under an external perpendicular magnetic field. We verify the model's rationality and functionality using InGa(N)As/GaAs single QWs. In addition, we derive the Urbach energy and determine the lateral length distribution of interfacial disorders. The results show that the magnetic field-dependent PL intensity, as described by our model, serves as a valid probe for quantifying the interface flatness. The model also reveals that the mechanism of magnetic-field-induced intensity enhancement is a joint effect of interfacial disorder-induced exciton localization and the transfer of excitons from dark to bright states. These insights may benefit performance improvements of type-I QW materials and devices.
Keywords:  photoluminescence      type-I quantum wells      interfacial disorders      magnetic field  
Received:  17 June 2025      Revised:  11 July 2025      Accepted manuscript online:  30 July 2025
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.67.De (Quantum wells)  
  79.60.-i (Photoemission and photoelectron spectra)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: The work was partially supported by the National Natural Science Foundation of China (Grant Nos. 12227901, 12393830, and 12274429) and the STCSM (Grant No. 22QA1410600).
Corresponding Authors:  Jun Shao, Xiren Chen, Shumin Wang     E-mail:  jshao@mail.sitp.ac.cn;xrchen@mail.sitp.ac.cn;shumin@chalmers.se

Cite this article: 

Jun Shao(邵军), Man Wang(王嫚), Xiren Chen(陈熙仁), Liangqing Zhu(朱亮清), F. X. Zha(查访星), H. Zhao, Shumin Wang(王庶民), and Wei Lu(陆卫) Magnetic-field-induced photoluminescence enhancement in type-I quantum wells: A quantitative probe for interface flatness 2025 Chin. Phys. B 34 107802

[1] Braun W, Kulik L V, Baars T, Bayer M and Forchel A 1998 Phys. Rev. B 57 7196
[2] Lee S, Jo H J, Mathews S, Simon J A, Ronningen T J, Kodati S H, Fink D R, Kim J S, Winslow M, Grein C H, Jones A H, Campbell J C and Krishna S 2019 Appl. Phys. Lett. 115 211601
[3] Wolny P, Turski H, Muziol G, Sawicka M, Smalc-Koziorowska J, Moneta J, Hajdel M, Feduniewicz- ·Zmuda A, Grzanka S, Kudrawiec R and Skierbiszewski C 2022 Phys. Rev. Appl. 19 014044
[4] Lhuillier E, Ribet-Mohamed I, Rosencher E, Patriarche G, Buffaz A, Berger V and Carras M 2010 Appl. Phys. Lett. 96 061111
[5] Yu C T, Lai W C, Yen C H, Hsu H C and Chang S J 2014 Opt. Express 62 A633
[6] Boyle C, Oresick K M, Kirch J D, Flores Y V, Mawst L J and Botez D 2020 Appl. Phys. Lett. 117 051101
[7] Erdmann M, Ropers C, Wenderoth M, Ulbrich R G, Malzer S and Döhler G H 2006 Phys. Rev. B 74 125412
[8] Tabuchi M, Takahashi R, Araki M, Hirayama K, Futakuchi N, Shimogaki Y, Nakano Y and Takeda Y 2000 Appl. Surf. Sci. 159-160 250
[9] Yamakawa I, Oga R, Fujiwara Y, Takeda Y and Nakamura A 2004 Appl. Phys. Lett. 84 4436
[10] Moret N, Oberli D Y, Pelucchi E, Gogneau N, Rudra A and Kapon E 2006 Appl. Phys. Lett. 88 141917
[11] Gold A 1987 Phys. Rev. B 35 723
[12] Pusep Y A, Gozzo G C and LaPierre R R 2008 Appl. Phys. Lett. 93 242104
[13] Zhu L, Shao J, Chen X, Li Y, Zhu L, Qi Z, Lin T, Bai W, Tang X and Chu J 2016 Phys. Rev. B 94 155201
[14] Li J K, Ai L K, Qi M, Xu A H and Wang S M 2018 Chin. Phys. B 27 048101
[15] Pan W, Wang L, Zhang Y, Lei W and Wang S 2019 Appl. Phys. Lett. 114 152102
[16] Huang J Y, Shang L, Ma S F, Han B, Wei G D, Liu Q M, Hao X D, Shan H S and Xu B S 2020 Chin. Phys. B 29 010703
[17] Lu G, Lv Z, Zhang Z, Yang X and Yang T 2021 Chin. Phys. B 30 017802
[18] Huang J, Zhuo H C Z, Wang J, Li S, Ding K, Ni H, Niu Z, Jiang D, Dou X and Sun B 2021 Chin. Phys. B 30 097805
[19] Zhu L, Liu S, Shao J, Chen X, Liu F, Hu Z and Chu J 2023 Chin. Phys. Lett. 40 077503
[20] Ma S F, Li L, Kong Q B, Xu Y, Liu Q M, Zhang S, Zhang X S, Han B, Qiu B C, Xu B S and Hao X D 2023 Chin. Phys. B 32 037801
[21] Li S, Shao P, Liang X, Chen S, Li Z, Su X, Tao T, Xie Z, Liu B, Khan M A, Wang L, Lin T T, Hirayama H, Zhang R and Wang K 2024 Chin. Phys. B 33 126801
[22] Shao J, Chen X, Wang M and Lu W 2025 Acta Phys. Sin. 74 017801 (in Chinese)
[23] Shao J, Lu W, Lü X, Yue F, Li Z, Guo S and Chu J 2006 Rev. Sci. Instrum. 77 063104
[24] Shao J, Chen L, Lü X, Lu W, He L, Guo S and Chu J 2009 Appl. Phys. Lett. 95 041908
[25] Shao J, Chen L, LuW, Lu X, Zhu L, Guo S, He L and Chu J 2010 Appl. Phys. Lett. 96 121915
[26] Chen X, Zhu L and Shao J 2019 Rev. Sci. Instrum. 90 093106
[27] Chen X, Zhu L, Zhang Y, Zhang F,Wang S and Shao J 2021 Phys. Rev. Appl. 15 044007
[28] Chen X and Shao J 2024 Rev. Sci. Instrum. 95 123906
[29] Grousson R, Voliotis V, Grandjean N, Massies J, LerouxMand Deparis C 1997 Phys. Rev. B 55 5253
[30] Jahn U, Kwok S H, Ramsteiner M, Hey R, Grahn H T and Runge E 1996 Phys. Rev. B 54 2733
[31] Zhang X C, Chang S K, Nurmikko A V, Kolodziejski L A, Gunshor R L and Datta S 1985 Phys. Rev. B 31 4056
[32] Zhou W G, Jiang D W, Shang X J, Wu D H, Chang F R, Jiang J K, Li N, Lin F Q, Chen W Q, Hao H Y, Liu X L, Tan P H, Wang G W, Xu Y Q and Niu Z C 2023 Chin. Phys. B 32 088501
[33] Sugawara M, Okazaki N, Fujii T and Yamazaki S 1993 Phys. Rev. B 48 8102
[34] Shao J, Winterhoff R, Dörnen A, Baars E and Chu J 2003 Phys. Rev. B 68 165327
[35] Bansal B, Hayne M, Arora B M and Moshchalkov V V 2007 Appl. Phys. Lett. 91 251108
[36] Chen X, Xu Z, Zhou Y, Zhu L, Chen J and Shao J 2020 Appl. Phys. Lett. 117 081104
[37] Haldar S, Dixit V K, Vashisht G, Porwal S and Sharma T K 2018 J. Appl. Phys. 124 055704
[38] Wade A, Fedorov G, Smirnov D, Kumar S, Williams B S, Hu Q and Reno J L 2009 Nat. Photon. 3 41
[39] Maero S, Louis-Anne de Vaulchier, Guldner Y, Deutsch C, Krall M, Zederbauer T, Strasser G and Unterrainer K 2013 Appl. Phys. Lett. 103 051116
[40] Damen T C, Vina L, Cunningham J E and Shah J 1991 Phys. Rev. Lett. 67 3432
[41] Damen T C, Shah J, Oberli D Y, Chemla D S, Cunningham J E and Kuo J M 1990 Phys. Rev. B 42 7434
[42] Kurdyubov A S, Trifonov A V, Gerlovin I Y, Gribakin B F, Grigoryev P S, Mikhailov A V, Ignatiev I V, Efimov Y P, Eliseev S A, Lovtcius V A, Aßmann M, Bayer M and Kavokin A V 2021 Phys. Rev. B 104 035414
[43] Reischle M, Beirne G J, Roßbach R, JetterMand Michler P 2008 Phys. Rev. Lett. 101 146402
[44] Chang K and Peeters F M 2001 Phys. Rev. B 63 153307
[45] Shao J, Qi Z, Zhao H, Zhu L, Song Y, Chen X, Zha F X, Guo S and Wang S M 2015 J. Appl. Phys. 118 165305
[46] Shao J, Dörnen A, Baars E, Härle V, Scholz F, Guo S and Chu J 2003 J. Appl. Phys. 93 951
[47] Wager J F 2017 AIP Adv. 7 125321
[48] Urbach F 1953 Phys. Rev. 92 1324
[49] Eliseev P G, Perlin P, Lee J and Osiński M 1997 Appl. Phys. Lett. 71 569
[50] Kaschner A, Lüttgert T, Born H, Hoffmann A, Egorov A Y and Riechert H 2001 Appl. Phys. Lett. 78 1391
[51] Pan Y, Inam F, Zhang M and Drabold D A 2008 Phys. Rev. Lett. 100 206403
[52] Rubel O, Baranovskii S D, Hantke K, Rühle W W, Thomas P, Volz K and Stolz W 2006 Phys. Stat. Sol. (c) 3 2481
[53] Bleuse J, Perret S, Curé Y, Grenet L, André R and Mariette H 2020 Phys. Rev. B 102 195205
[54] Kaiser C, Sandberg O J, Zarrabi N, Li W, Meredith P and Armin A 2021 Nat. Commun. 12 3988
[55] Piccardo M, Li C K,Wu Y R, Speck J S, Bonef B, Farrell R M, Filoche M, Martinelli L, Peretti J andWeisbuch C 2017 Phys. Rev. B 95 144205
[56] Kammerer C, Cassabois G, Voisin C, Delalande C, Roussignol P and Gérard J M 2001 Phys. Rev. Lett. 87 207401
[57] Ste?pnicki P, Pie?tka B, Morier-Genoud F, Deveaud B and Matuszewski M 2015 Phys. Rev. B 91 195302
[58] Patricio M A T, Villegas-Lelovsky L, de Oliveira E R C, Marques G E, LaPierre R R, Toropov A I and Pusep Y A 2023 Phys. Rev. B 108 035416
[59] Hohenester U, Goldoni G and Molinari E 2005 Phys. Rev. Lett. 95 216802
[60] Schaller R D, Crooker S A, Bussian D A, Pietryga J M, Joo J and Klimov V I 2010 Phys. Rev. Lett. 105 067403
[61] Schnabel R F, Zimmermann R, Bimberg D, Nickel H, Losch R and Schlapp W 1992 Phys. Rev. B 46 9873
[62] Bimberg D, Sondergeld M and Grobe E 1971 Phys. Rev. B 4 3451
[63] Callsen G, Wagner M R, Kure T, Reparaz J S, Bugler M, Brunnmeier J, Nenstiel C, Hoffmann A, Hoffmann M, Tweedie J, Bryan Z, Aygun S, Kirste R, Collazo R and Sitar Z 2012 Phys. Rev. B 86 075207
[64] Chen X, Wu X, Yue L, Zhu L, Pan W, Qi Z, Wang S and Shao J 2017 Appl. Phys. Lett. 110 051903
[65] Herklotz F, Lavrov E V, Melnikov V V, Galazka Z and Agekyan V F 2023 Phys. Rev. B 108 205204
[66] Shao J, Lu W, Tsen G K O, Guo S and Dell J M 2012 J. Appl. Phys. 112 063512
[67] Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L and Shao J 2014 Jpn. J. Appl. Phys. 53 082201
[68] Chen X, Zhuang Q, Alradhi H, Jin Z M, Zhu L, Chen X and Shao J 2017 Nano Lett. 17 1545
[69] Varshni Y 1967 Physica 34 149
[70] Qiao H, Abel K A, van Veggel F C J M and Young J F 2010 Phys. Rev. B 82 165435
[71] Zhao H, Wang S M, Zhao Q X, Lai Z H, Sadeghi M and Larsson A 2008 Semicond. Sci. Technol. 23 125002
[72] Ishikawa F, A lvaro Guzmań, Brandt O, Trampert A and Ploog K H 2008 J. Appl. Phys. 104 115302
[73] Hong Y G, Nishikawa A and Tu C W 2003 Appl. Phys. Lett. 83 5446
[74] Kappei L, Szczytko J, Morier-Genoud F and Deveaud B 2005 Phys. Rev. B 94 147403
[75] SemtsivMP, Flores Y, Chashnikova M, Monastyrskyi G and Masselink W T 2012 Appl. Phys. Lett. 100 163502
[76] Chao K J, Liu N, Shih C K, Gotthold D W and Streetman B G 1999 Appl. Phys. Lett. 75 1703
[77] Schmelcher P and Cederbaum L S 1995 Phys. Rev. Lett. 74 662
[78] Getter A and Perakis I E 1999 Phys. Rev. B 60 16027
[79] Uchida K, Miura N, Kitamura J and Kukimoto H 1996 Phys. Rev. B 53 4809
[80] Kobayashi Y, Kouzu K and Kamimura H 1999 Solid State Commun. 109 583
[81] Shamirzaev T S, Debus J, Yakovlev D R, Glazov M M, Ivchenko E L and Bayer M 2016 Phys. Rev. B 94 045411
[82] Zhao Q X, Monemar B, Holtz P O, Lundström T, Sundaram M, Merz J L and Gossard A C 1994 Phys. Rev. B 50 7514
[83] Haldar S, Dixit V K, Vashisht G, Porwal S and Sharma T K 2017 J. Phys. D: Appl. Phys. 50 335107
[84] Sugawara M 1992 Phys. Rev. B 45 11423
[85] Sugawara M, Okazaki N, Fujii T and Yamazaki S 1993 Phys. Rev. B 48 8848
[86] Ferreira R, Soucail B, Voisin P and Bastard G 1990 Phys. Rev. B 42 11404
[87] Shao J, Haase D, Dörnen A, Härle V and Scholz F 2000 J. Appl. Phys. 87 4303
[1] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[2] High-sensitivity spectroscopic measurements under pulsed high magnetic field
Zheng Wang(王政), Yichun Pan(潘议淳), Guangran Yang(杨光冉), Wei Xie(谢微), and Weihang Zhou(周伟航). Chin. Phys. B, 2025, 34(7): 070701.
[3] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[4] Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter
Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵). Chin. Phys. B, 2025, 34(4): 044204.
[5] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[6] Stability and characteristic modes of skyrmions in magnetic nanotubes
Tijjani Abdulrazak, Qizhi Cai(蔡淇智), and Guangwei Deng(邓光伟). Chin. Phys. B, 2025, 34(10): 107512.
[7] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[8] Quantum confinement of carriers in the type-I quantum wells structure
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(9): 097301.
[9] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[10] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[11] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[12] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[13] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[14] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[15] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
No Suggested Reading articles found!