Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120505    DOI: 10.1088/1674-1056/ae0561
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience Prev   Next  

Mutual annihilation of counter-rotating spiral waves induced by electric fields

Ying-Qi Liu(刘瑛琦), Yi-Peng Hu(胡义鹏), Qian-Ming Ding(丁钱铭), Ying Xie(谢盈), and Ya Jia(贾亚)
Department of Physics, Central China Normal University, Wuhan 430079, China
Abstract  Spiral waves, as a typical self-organized structure with chiral characteristics, are widely found in excitable media such as cardiac tissues, chemical reactions, and neural networks. Based on the FitzHugh-Nagumo model, we investigated the mechanisms underlying the effects of direct current electric fields (DCEF), alternating current electric fields (ACEF), and polarized electric fields (PEF) on the interaction and annihilation processes of counter-rotating spiral waves. We found that in a direct current electric field, the drift direction of the spiral wave is determined jointly by its chirality and the electric field direction, which allows selective attraction or repulsion. In an alternating current electric field, the annihilation behavior of spiral waves can be influenced by the phase and intensity of the electric field, where a specific range of parameters induces resonance drift and eventual annihilation. On the other hand, the polarized electric field exhibits a more complex modulation capability on spiral waves: the trajectory and annihilation efficiency of spiral waves can be regulated by both the intensity and phase of the polarized electric field. These results reveal the potential feasibility of regulating multichiral spiral waves through multiple electric fields, providing theoretical insight for the control of spiral waves in relevant systems.
Keywords:  spiral waves      electric fields      chirality  
Received:  05 July 2025      Revised:  10 September 2025      Accepted manuscript online:  10 September 2025
PACS:  05.65.+b (Self-organized systems)  
  47.54.-r (Pattern selection; pattern formation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12175080) and by SelfDetermined Research Funds of Central China Normal University from the Colleges’ Basic Research and Operation of MOE (Grant No. CCNU25JC012).
Corresponding Authors:  Ya Jia     E-mail:  jiay@ccnu.edu.cn

Cite this article: 

Ying-Qi Liu(刘瑛琦), Yi-Peng Hu(胡义鹏), Qian-Ming Ding(丁钱铭), Ying Xie(谢盈), and Ya Jia(贾亚) Mutual annihilation of counter-rotating spiral waves induced by electric fields 2025 Chin. Phys. B 34 120505

[1] Zaikin A N and Zhabotinsky A M 1970 Nature 225 535
[2] Qu Z L, Hu G, Garfinkel A and Weiss J N 2014 Phys. Rep. 543 61
[3] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W and Jalife J 1992 Nature 355 349
[4] Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton F H, Hasenfuß G, Gilmour R F and Luther S 2018 Nature 555 667
[5] Jakubith S, Rotermund H H, Engel W, Von Oertzen A and Ertl G 1990 Phys. Rev. Lett. 65 3013
[6] Winfree A T 1972 Science 175 634
[7] Ouyang Q, Swinney H L and Li G 2000 Phys. Rev. Lett. 84 1047
[8] Pandit S V and Jalife J 2013 Circ. Res. 112 849
[9] Panfilov A V and Holden A V 1990 Phys. Lett. A 151 23
[10] Gray R A, Jalife J, Panfilov A, Baxter W T, Cabo C, Davidenko J M and Pertsov A M 1995 Circulation 91 2454
[11] Barac U, Perc M and Gosak M 2023 Chaos 33 43120
[12] Majhi S, Perc M and Ghosh D 2022 J. R. Soc. Interface 19 20220043
[13] Liu Y, Ma J, Xu Y and Jia Y 2019 Int. J. Bifurc. Chaos 29 1950156
[14] Lu L L, Jia Y, Liu W H and Yang L J 2017 Complexity 2017 1
[15] Ma J 2025 Nonlinear Dyn. 111 25365
[16] Wu Y, Ding Q M, Li T Y, Yu D and Jia Y 2023 Nonlinear Dyn. 111 2693
[17] Ding Q M, Wu Y, Li T Y, Yu D and Jia Y 2023 Chaos Solitons Fractals 171 113464
[18] Ma J, Liu Q R, Ying H P and Wu Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1665
[19] Kai G 2025 Eur. Phys. J. Spec. Top. 234 1051
[20] Yu D, Wang G W, Ding Q M, Li T Y and Jia Y 2022 Chaos Solitons Fractals 157 111929
[21] Yu D, Zhan X, Yang L J and Jia Y 2023 Phys. Rev. E 108 14205
[22] Yuan G Y, Xu L, Xu A G, Wang G R and Yang S P 2011 Chaos Solitons Fractals 44 728
[23] Ramakrishnan B, Moroz I, Li C, Karthikeyan A and Rajagopal K 2021 Eur. Phys. J. Spec. Top. 230 3369
[24] Ramakrishnan B, Karthikeyan A, Srinivasan A and Rajagopal K 2022 Eur. Phys. J. Spec. Top. 231 2439
[25] Xia Y X, Zhi X P, Li T C, Pan J T, Panfilov A V and Zhang H 2022 Phys. Rev. E 106 24405
[26] Hu Y P, Ding Q M, Wu Y, Jia Y, Li T Y, Yu D and Zhan X 2024 Nonlinear Dyn. 112 19421
[27] Ding Q M, Hu Y P, Wu Y, Hu X Y, Jia Y and Yang L J 2025 Chaos Solitons Fractals 191 115846
[28] Li T C, Zhong W, Ai B, Panfilov A V and Dierckx H 2022 Phys. Rev. E 105 14214
[29] Sung Y L, Wang T W, Lin T T and Lin S F 2022 Int. J. Arrhythmia 23 9
[30] Leemann S, Schneider-Warme F and Kleinlogel S 2023 Pflug. Arch. Eur. J. Physiol. 475 1421
[31] Ding Q M, Wu Y, Yu D, Li T Y and Jia Y 2023 Phys. Lett. A 489 129154
[32] Malki G and Zlochiver S 2018 Med. Eng. Phys. 61 69
[33] Steinbock O, Schutze J and M uller S C 1992 Phys. Rev. Lett. 68 248
[34] Agladze K I and De Kepper P 1992 J. Phys. Chem. 96 5239
[35] Li T C, Gao X, Zheng F F, Pan D B, Zheng B and Zhang H 2017 Sci. Rep. 7 8657
[36] Munuzuri A P, Gomez-Gesteira M, Perez-Munuzuri V, Krinsky V I and Perez-Villar V 1994 Phys. Rev. E 50 4258
[37] Chen J X, Zhang H and Li Y Q 2006 J. Chem. Phys. 124 14505
[38] Luo J, Li T C and Zhang H 2020 Phys. Rev. E 101 32205
[39] Zhang H, Hu B, Hu G and Xiao J H 2003 J. Chem. Phys. 119 4468
[40] Deng L Y, Zhang H and Li Y Q 2009 Phys. Rev. E 79 36107
[41] Cai M C, Pan J T and Zhang H 2012 Phys. Rev. E 86 16208
[42] Ji L, Zhou Y, Li Q, Qiao C and Ouyang Q 2013 Phys. Rev. E 88 42919
[43] Li B W, Deng L Y and Zhang H 2013 Phys. Rev. E 87 42905
[44] Pan J T, He Y J, Xia Y X, Zhang H 2020 Acta Phys. Sin. 69 80503 (in Chinese)
[45] Li T C, Li B W, Zheng B, Zhang H, Panfilov A and Dierckx H 2019 New J. Phys. 21 43012
[46] Hu Y P, Ding Q M, Wu Y and Jia Y 2023 Chaos Solitons Fractals 175 113957
[47] Li B W, Cai M C, Zhang H, Panfilov A V and Dierckx H 2014 J. Chem. Phys. 140 184901
[48] Quail T, Shrier A and Glass L 2014 Phys. Rev. Lett. 113 158101
[49] Kalita H and Dutta S 2022 Phys. Rev. E 105 54213
[50] Ermakova E A, Pertsov A M and Shnol E E 1989 Phys. Nonlinear Phenom. 40 185
[51] Kalita H, Khan P and Dutta S 2022 Phys. Rev. E 106 34201
[52] He Y J, Li Q H, Zhou K S, Jiang R H, Jiang C Y, Pan J T, Zheng D F, Zheng B and Zhang H 2021 Phys. Rev. E 104 014213
[53] Li T C, Pan D B, Zhou K S, Jiang R H, Jiang C Y, Zheng B and Zhang H 2018 Phys. Rev. E 98 062405
[54] Li T C, Van Nieuwenhuyse E, Xia Y X, Pan J T, Duytschaever M, Knecht S, Vandersickel N, Zhou C S, Panfilov A V and Zhang H 2021 Phys. Rev. E 104 64401
[55] Mermin N.D. 1979 Rev. Mod. Phys 51 591
[56] Tyree T J, Murphy P and Rappel W J 2024 Chaos 34 53131
[57] Henry H and Hakim V 2002 Phys. Rev. E 65 46235
[58] Biktasheva I V, Barkley D, Biktashev V N and Foulkes A J 2010 Phys. Rev. E 81 66202
[59] Pan D B, Gao X, Feng X, Pan J T and Zhang H 2016 Sci. Rep. 6 21876
[60] Xu W, Lin G T, Shu M F, Jiao J L, Zhu J F, Ren Q Y, Le M D, Luo X, Sun Y P, Liu Y, Qu Z, Zhou H D, Gao S and Ma J 2024 Chin. Phys. Lett. 41 117503
[61] Zhu M C, Fu S G and Man Z S 2023 Chin. Phys. B 32 114202
[62] Wang H C, Wang Z H, Chen X Y, Wei S H, Zhu W and Zhang X 2023 Chin. Phys. Lett. 40 47701
[1] Chiral bound states in a staggered array of coupled resonators
Wu-Lin Jin(金伍林), Jing Li(李静), Jing Lu(卢竞), Zhi-Rui Gong(龚志瑞), and Lan Zhou(周兰). Chin. Phys. B, 2024, 33(2): 020302.
[2] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[3] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[4] Optical chirality induced by spin-orbit interaction of light in a tightly focused Laguerre-Gaussian beam
Mingchao Zhu(朱明超), Shenggui Fu(付圣贵), and Zhongsheng Man(满忠胜). Chin. Phys. B, 2023, 32(11): 114202.
[5] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[6] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[7] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[8] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[9] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[10] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[11] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[12] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[13] Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields
Jun Zhang(张军), Tong Qi(齐桐), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Kai-Guang Zhu(朱凯光), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(10): 103204.
[14] Molecular dynamics simulation of the response of bi-disperse polyelectrolyte brushes to external electric fields
Fen Zhang(张芬), Huan-Da Ding(丁欢达), Chao Duan(段超), Shuang-Liang Zhao(赵双良), Chao-Hui Tong(童朝晖). Chin. Phys. B, 2017, 26(8): 088204.
[15] Tuning the energy gap of bilayer α -graphyne by applying strain and electric field
Yang Hang(杭阳), Wen-Zhi Wu(吴文志), Jin Yu(于进), Wan-Lin Guo(郭万林). Chin. Phys. B, 2016, 25(2): 023102.
No Suggested Reading articles found!