| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
Mutual annihilation of counter-rotating spiral waves induced by electric fields |
| Ying-Qi Liu(刘瑛琦), Yi-Peng Hu(胡义鹏), Qian-Ming Ding(丁钱铭), Ying Xie(谢盈), and Ya Jia(贾亚)† |
| Department of Physics, Central China Normal University, Wuhan 430079, China |
|
|
|
|
Abstract Spiral waves, as a typical self-organized structure with chiral characteristics, are widely found in excitable media such as cardiac tissues, chemical reactions, and neural networks. Based on the FitzHugh-Nagumo model, we investigated the mechanisms underlying the effects of direct current electric fields (DCEF), alternating current electric fields (ACEF), and polarized electric fields (PEF) on the interaction and annihilation processes of counter-rotating spiral waves. We found that in a direct current electric field, the drift direction of the spiral wave is determined jointly by its chirality and the electric field direction, which allows selective attraction or repulsion. In an alternating current electric field, the annihilation behavior of spiral waves can be influenced by the phase and intensity of the electric field, where a specific range of parameters induces resonance drift and eventual annihilation. On the other hand, the polarized electric field exhibits a more complex modulation capability on spiral waves: the trajectory and annihilation efficiency of spiral waves can be regulated by both the intensity and phase of the polarized electric field. These results reveal the potential feasibility of regulating multichiral spiral waves through multiple electric fields, providing theoretical insight for the control of spiral waves in relevant systems.
|
Received: 05 July 2025
Revised: 10 September 2025
Accepted manuscript online: 10 September 2025
|
|
PACS:
|
05.65.+b
|
(Self-organized systems)
|
| |
47.54.-r
|
(Pattern selection; pattern formation)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12175080) and by SelfDetermined Research Funds of Central China Normal University from the Colleges’ Basic Research and Operation of MOE (Grant No. CCNU25JC012). |
Corresponding Authors:
Ya Jia
E-mail: jiay@ccnu.edu.cn
|
Cite this article:
Ying-Qi Liu(刘瑛琦), Yi-Peng Hu(胡义鹏), Qian-Ming Ding(丁钱铭), Ying Xie(谢盈), and Ya Jia(贾亚) Mutual annihilation of counter-rotating spiral waves induced by electric fields 2025 Chin. Phys. B 34 120505
|
[1] Zaikin A N and Zhabotinsky A M 1970 Nature 225 535 [2] Qu Z L, Hu G, Garfinkel A and Weiss J N 2014 Phys. Rep. 543 61 [3] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W and Jalife J 1992 Nature 355 349 [4] Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton F H, Hasenfuß G, Gilmour R F and Luther S 2018 Nature 555 667 [5] Jakubith S, Rotermund H H, Engel W, Von Oertzen A and Ertl G 1990 Phys. Rev. Lett. 65 3013 [6] Winfree A T 1972 Science 175 634 [7] Ouyang Q, Swinney H L and Li G 2000 Phys. Rev. Lett. 84 1047 [8] Pandit S V and Jalife J 2013 Circ. Res. 112 849 [9] Panfilov A V and Holden A V 1990 Phys. Lett. A 151 23 [10] Gray R A, Jalife J, Panfilov A, Baxter W T, Cabo C, Davidenko J M and Pertsov A M 1995 Circulation 91 2454 [11] Barac U, Perc M and Gosak M 2023 Chaos 33 43120 [12] Majhi S, Perc M and Ghosh D 2022 J. R. Soc. Interface 19 20220043 [13] Liu Y, Ma J, Xu Y and Jia Y 2019 Int. J. Bifurc. Chaos 29 1950156 [14] Lu L L, Jia Y, Liu W H and Yang L J 2017 Complexity 2017 1 [15] Ma J 2025 Nonlinear Dyn. 111 25365 [16] Wu Y, Ding Q M, Li T Y, Yu D and Jia Y 2023 Nonlinear Dyn. 111 2693 [17] Ding Q M, Wu Y, Li T Y, Yu D and Jia Y 2023 Chaos Solitons Fractals 171 113464 [18] Ma J, Liu Q R, Ying H P and Wu Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1665 [19] Kai G 2025 Eur. Phys. J. Spec. Top. 234 1051 [20] Yu D, Wang G W, Ding Q M, Li T Y and Jia Y 2022 Chaos Solitons Fractals 157 111929 [21] Yu D, Zhan X, Yang L J and Jia Y 2023 Phys. Rev. E 108 14205 [22] Yuan G Y, Xu L, Xu A G, Wang G R and Yang S P 2011 Chaos Solitons Fractals 44 728 [23] Ramakrishnan B, Moroz I, Li C, Karthikeyan A and Rajagopal K 2021 Eur. Phys. J. Spec. Top. 230 3369 [24] Ramakrishnan B, Karthikeyan A, Srinivasan A and Rajagopal K 2022 Eur. Phys. J. Spec. Top. 231 2439 [25] Xia Y X, Zhi X P, Li T C, Pan J T, Panfilov A V and Zhang H 2022 Phys. Rev. E 106 24405 [26] Hu Y P, Ding Q M, Wu Y, Jia Y, Li T Y, Yu D and Zhan X 2024 Nonlinear Dyn. 112 19421 [27] Ding Q M, Hu Y P, Wu Y, Hu X Y, Jia Y and Yang L J 2025 Chaos Solitons Fractals 191 115846 [28] Li T C, Zhong W, Ai B, Panfilov A V and Dierckx H 2022 Phys. Rev. E 105 14214 [29] Sung Y L, Wang T W, Lin T T and Lin S F 2022 Int. J. Arrhythmia 23 9 [30] Leemann S, Schneider-Warme F and Kleinlogel S 2023 Pflug. Arch. Eur. J. Physiol. 475 1421 [31] Ding Q M, Wu Y, Yu D, Li T Y and Jia Y 2023 Phys. Lett. A 489 129154 [32] Malki G and Zlochiver S 2018 Med. Eng. Phys. 61 69 [33] Steinbock O, Schutze J and M uller S C 1992 Phys. Rev. Lett. 68 248 [34] Agladze K I and De Kepper P 1992 J. Phys. Chem. 96 5239 [35] Li T C, Gao X, Zheng F F, Pan D B, Zheng B and Zhang H 2017 Sci. Rep. 7 8657 [36] Munuzuri A P, Gomez-Gesteira M, Perez-Munuzuri V, Krinsky V I and Perez-Villar V 1994 Phys. Rev. E 50 4258 [37] Chen J X, Zhang H and Li Y Q 2006 J. Chem. Phys. 124 14505 [38] Luo J, Li T C and Zhang H 2020 Phys. Rev. E 101 32205 [39] Zhang H, Hu B, Hu G and Xiao J H 2003 J. Chem. Phys. 119 4468 [40] Deng L Y, Zhang H and Li Y Q 2009 Phys. Rev. E 79 36107 [41] Cai M C, Pan J T and Zhang H 2012 Phys. Rev. E 86 16208 [42] Ji L, Zhou Y, Li Q, Qiao C and Ouyang Q 2013 Phys. Rev. E 88 42919 [43] Li B W, Deng L Y and Zhang H 2013 Phys. Rev. E 87 42905 [44] Pan J T, He Y J, Xia Y X, Zhang H 2020 Acta Phys. Sin. 69 80503 (in Chinese) [45] Li T C, Li B W, Zheng B, Zhang H, Panfilov A and Dierckx H 2019 New J. Phys. 21 43012 [46] Hu Y P, Ding Q M, Wu Y and Jia Y 2023 Chaos Solitons Fractals 175 113957 [47] Li B W, Cai M C, Zhang H, Panfilov A V and Dierckx H 2014 J. Chem. Phys. 140 184901 [48] Quail T, Shrier A and Glass L 2014 Phys. Rev. Lett. 113 158101 [49] Kalita H and Dutta S 2022 Phys. Rev. E 105 54213 [50] Ermakova E A, Pertsov A M and Shnol E E 1989 Phys. Nonlinear Phenom. 40 185 [51] Kalita H, Khan P and Dutta S 2022 Phys. Rev. E 106 34201 [52] He Y J, Li Q H, Zhou K S, Jiang R H, Jiang C Y, Pan J T, Zheng D F, Zheng B and Zhang H 2021 Phys. Rev. E 104 014213 [53] Li T C, Pan D B, Zhou K S, Jiang R H, Jiang C Y, Zheng B and Zhang H 2018 Phys. Rev. E 98 062405 [54] Li T C, Van Nieuwenhuyse E, Xia Y X, Pan J T, Duytschaever M, Knecht S, Vandersickel N, Zhou C S, Panfilov A V and Zhang H 2021 Phys. Rev. E 104 64401 [55] Mermin N.D. 1979 Rev. Mod. Phys 51 591 [56] Tyree T J, Murphy P and Rappel W J 2024 Chaos 34 53131 [57] Henry H and Hakim V 2002 Phys. Rev. E 65 46235 [58] Biktasheva I V, Barkley D, Biktashev V N and Foulkes A J 2010 Phys. Rev. E 81 66202 [59] Pan D B, Gao X, Feng X, Pan J T and Zhang H 2016 Sci. Rep. 6 21876 [60] Xu W, Lin G T, Shu M F, Jiao J L, Zhu J F, Ren Q Y, Le M D, Luo X, Sun Y P, Liu Y, Qu Z, Zhou H D, Gao S and Ma J 2024 Chin. Phys. Lett. 41 117503 [61] Zhu M C, Fu S G and Man Z S 2023 Chin. Phys. B 32 114202 [62] Wang H C, Wang Z H, Chen X Y, Wei S H, Zhu W and Zhang X 2023 Chin. Phys. Lett. 40 47701 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|