Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 023102    DOI: 10.1088/1674-1056/25/2/023102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tuning the energy gap of bilayer α -graphyne by applying strain and electric field

Yang Hang(杭阳), Wen-Zhi Wu(吴文志), Jin Yu(于进), Wan-Lin Guo(郭万林)
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  Our density functional theory calculations show that the energy gap of bilayer α -graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α -graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α -graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices.
Keywords:  band gap      bilayer α -graphyne      electric fields      strain  
Received:  16 September 2015      Revised:  01 October 2015      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Ac (Multilayers)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Wan-Lin Guo     E-mail:  wlguo@nuaa.edu.cn

Cite this article: 

Yang Hang(杭阳), Wen-Zhi Wu(吴文志), Jin Yu(于进), Wan-Lin Guo(郭万林) Tuning the energy gap of bilayer α -graphyne by applying strain and electric field 2016 Chin. Phys. B 25 023102

[1] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[2] Haley M M, Brand S C and Pak J J 1997 Angew. Chem. Int. Ed. 36 836
[3] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J and Zhu D B 2010 Chem. Commun. 46 3256
[4] Liu H B, Xu J L, Li Y J and Li Y L 2010 ACC Chem. Res. 43 1496
[5] Cranford S W and Buehler M J 2011 Carbon 49 4111
[6] Shao T J, Wen B, Melnik R, Yao S, Kawazoe Y and Tian Y J 2012 J. Chem. Phys. 137 194901
[7] Zhang Y Y, Pei Q X and Wang C M 2012 Appl. Phys. Lett. 101 081909
[8] Xiang L, Wu J, Ma, S Y, Wang F and Zhang K W 2015 Chin. Phys. Lett. 32 096801
[9] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[10] Pan L D, Zhang L Z, Song B Q, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 173102
[11] Dong B J, Yang T, Wang J Z and Zhang Z D 2015 Chin. Phys. B 24 096806
[12] Lin X, Wang H L, Pan H and Xu H Z 2013 Chin. Phys. Lett. 30 077305
[13] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804
[14] Kang J, Li J, Wu F, Li S S and Xia J B 2011 J. Phys. Chem. C 115 20466
[15] Wu W Z, Guo W L and Zeng X C 2013 Nanoscale 5 9264
[16] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[17] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2003 Science 313 951
[18] McCann E 2006 Phys. Rev. B 74 161403
[19] Guo Y F, Guo W L and Chen C F 2008 Appl. Phys. Lett. 92 243101
[20] Han M, Zhang Y and Zheng H B 2010 Chin. Phys. Lett. 27 037302
[21] Leenaerts O, Partoens B and Peeters F M 2013 Appl. Phys. Lett. 103 013105
[22] Wang T, Guo Q, Liu Y and Sheng K 2012 Chin. Phys. B 21 067301
[23] Liu H L, Liu Y, Wang T and Ao Z M 2014 Chin. Phys. B 23 026802
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[29] Klimeš J, Bowler J R and Michaelides A 2011 Phys. Rev. B 83 195131
[30] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
[31] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
[32] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407
[33] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[34] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[11] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[12] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[15] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
No Suggested Reading articles found!