Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110702    DOI: 10.1088/1674-1056/ae039b
GENERAL Prev   Next  

Cu/PTFE triboelectric nanogenerator for Morse code and array information detection

Yulin Yan(闫玉霖), Yiming Qi(齐一鸣), and Huaisheng Wang(王槐生)†
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
Abstract  The application of triboelectric nanogenerators (TENGs) for collecting and converting waste energy into usable electrical energy has been widely reported. However, their practical application in real-time, self-powered communication systems, particularly for robust information transmission, remains underexplored. To achieve stable self-energy supply information transmission, this study presents a lightweight and flexible single-electrode TENG sensor based on a copper (Cu) foil and polytetrafluoroethylene (PTFE) composite. We systematically studied the stability of the device and found that it could maintain an output voltage of approximately 9 V after being stored at room temperature for 1 month. We also evaluated its power generation capacity, which was demonstrated by successfully lighting up to seven LEDs simultaneously. Additionally, we utilized its unique voltage signal to transmit Morse code and successfully sent the messages “SOS” and “HELLO” over a long distance. Furthermore, a 2×2 TENG array was fabricated and tested, confirming excellent channel independence with minimal crosstalk during simultaneous or selective activation. This work demonstrates that the Cu/PTFE TENG sensor is not only a stable energy harvester but also a viable platform for self-powered communication and distributed sensing and holds promise in applications integrating flexible electronics and the Internet of things.
Keywords:  triboelectric nanogenerator (TENG)      self-powered sensor      Morse code communication      energy harvesting      array independence  
Received:  19 July 2025      Revised:  21 August 2025      Accepted manuscript online:  05 September 2025
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  46.55.+d (Tribology and mechanical contacts)  
  62.20.Qp (Friction, tribology, and hardness)  
  45.20.dg (Mechanical energy, work, and power)  
Fund: Project supported by the State Key Laboratory of ASIC and System, Fudan University (Grant No. 2021KF005).
Corresponding Authors:  Huaisheng Wang     E-mail:  wanghuaisheng@suda.edu.cn

Cite this article: 

Yulin Yan(闫玉霖), Yiming Qi(齐一鸣), and Huaisheng Wang(王槐生) Cu/PTFE triboelectric nanogenerator for Morse code and array information detection 2025 Chin. Phys. B 34 110702

[1] Javaid S, Fahim H, Zeadally S, et al. 2023 IEEE Sensors Journal 23 20483
[2] Wu S D, Dong P H, Cui X, et al. 2022 Nano Energy 96 107136
[3] Zhao Z Q, Lu Y, Mi Y J, et al. 2022 Micromachines 13 1586
[4] Yang Y G, Meng Y, Zeng Y H, et al. 2023 Chin. Phys. B 32 090201
[5] Xie J H, Yang T and Tang J 2024 Chin. Phys. B 33 050706
[6] Huang M L, Yang Y G and Liu Y 2024 Chin. Phys. B 33 60203
[7] Zhang J Y, Gao Y K, Liu D, et al. 2023 Nat. Commun. 14 3218
[8] Xia X, Fu J J and Zi Y L 2019 Nat. Commun. 10 4428
[9] Sheng F F, Zhang B, Cheng R W, et al. 2023 Nano Research Energy 2 e9120079
[10] Guo X H, He J W, Zheng Y, et al. 2023 Nano Research Energy 2 e9120074
[11] Li H Z, Zhao X, Xie G Z, et al. 2025 Appl. Phys. Lett. 126 053504
[12] Sun J F, Li J Q, Huang Y Z, et al. 2023 Nano Research Energy 2 e9120066
[13] Kurita K 2022 Sensors 22 7161
[14] Zhou J M, Ma X T, Gao J Y, et al. 2024 Small 20 e2306980
[15] Huang J L, Cai Y L, Xie G Z, et al. 2024 Wearable Electronics 1 180
[16] Liu H, Yang T H, Zhang Z X, et al. 2024 High Voltage 9 1234
[17] Liu H, Zhang Z X, Song R M, et al. 2025 Journal Lightwave Technology 43 6004
[18] Dai J, Xie G Z, Huo X H, et al. 2025 Small 21 2407773
[19] Pan H, Wang Y X, Xie G Z, et al. 2025 Journal of Composites Science 9 339
[20] Luo X L, Li W X, Yuan L, et al. 2024 Nano Trends 8 100061
[21] Huang J L, Xie G Z, Xu X D, et al. 2024 ACS Applied Materials & Interfaces 16 58838
[22] Li H Z, Yang S L, Xie G Z, et al. 2025 ACS Applied Electronic Materials 7 1550
[23] Tan S X, Jiang Y, Chao X J, et al. 2025 Nano Research 18 94907167
[24] Chandrasekhar A, Vivekananthan V, Khandelwal G, et al. 2019 Nano Energy 60 850
[25] Liu H, Zhang Z X, Tian H Y, et al. 2024 IEEE Transactions on Instrumentation and Measurement 73 9519612
[26] LiWX, Xie G Z, Huo X H, et al. 2025 Journal of Materials Chemistry C 13 13582
[27] Li J, Xie G Z, Dai L W, et al. 2025 Journal of Composites Science 9 123
[28] Sun L W, Shi W J, Tian X Q, et al. 2025 NDT and E International 151 103318
[29] Hao H, Yao E J, Pan L, et al. 2025 Transportation Research Part A 199 104525
[1] Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
Mei-Ling Huang(黄美玲), Yong-Ge Yang(杨勇歌), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(6): 060203.
[2] Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise
Yong-Ge Yang(杨勇歌), Yun Meng(孟运), Yuan-Hui Zeng(曾远辉), and Ya-Hui Sun(孙亚辉). Chin. Phys. B, 2023, 32(9): 090201.
[3] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[4] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[5] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[6] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊). Chin. Phys. B, 2019, 28(1): 017701.
[7] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[8] Optimal satisfaction degree in energy harvesting cognitive radio networks
Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉). Chin. Phys. B, 2015, 24(12): 128401.
[9] Broadband energy harvesting via magnetic coupling between two movable magnets
Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳). Chin. Phys. B, 2014, 23(8): 084501.
[10] Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
Wu Shao-Hua (吴少华), Du Li-Dong (杜利东), Kong De-Yi (孔德义), Ping Hao-Yue (平皓月), Fang Zhen (方震), Zhao Zhan (赵湛). Chin. Phys. B, 2014, 23(4): 044302.
No Suggested Reading articles found!