Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084501    DOI: 10.1088/1674-1056/23/8/084501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband energy harvesting via magnetic coupling between two movable magnets

Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳)
School of Electronical & Mechanical Engineering, Xidian University, Xi'an 710071, China
Abstract  Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.
Keywords:  piezoelectric conversion      mechanical vibration      magnetic coupling      energy harvesting  
Received:  01 November 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  45.20.dg (Mechanical energy, work, and power)  
  46.70.De (Beams, plates, and shells)  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51205302) and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051304011).
Corresponding Authors:  Fan Kang-Qi     E-mail:  kangqifan@gmail.com

Cite this article: 

Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳) Broadband energy harvesting via magnetic coupling between two movable magnets 2014 Chin. Phys. B 23 084501

[1] Fan K Q, Jia J Y, Zhu Y M and Liu X Y 2007 Acta Phys. Sin. 56 6345 (in Chinese)
[2] Yuse K, Monnier T, Petit L, Lefeuvre E, Richard C and Guyomar D 2008 J. Intell. Mater. Syst. Struct. 19 387
[3] Yick J, Mukherjee B and Ghosal D 2008 Comput. Netw. 52 2292
[4] Wang Z Q, Zhao Y P and Huang Z P 2010 Int. J. Eng. Sci. 48 140
[5] Fan K Q, Jia J Y, Zhu Y M and Zhang X Y 2011 Chin. Phys. B 20 043401
[6] Fan K Q, Wang W D, Zhu Y M and Zhang X Y 2011 Sci. China: Phys. Mech. Astron. 54 1680
[7] Patricia M, Feng Q and Paul C 2011 Int. J. Sens. Netw. 10 73
[8] Clair D S, Bibo A, Sennakesavababu V R, Daqaq M F and Li G 2010 Appl. Phys. Lett. 96 144103
[9] Cottone F, Vocca H and Gammaitoni L 2009 Phys. Rev. Lett. 102 080601
[10] Hu Y T, Wang J N, Yang F, Xue H, Hu H P and Wang J 2011 IEEE T. Ultrason. Ferroelectr. Freq. Control 58 849
[11] Tang L H and Yang Y W 2012 Appl. Phys. Lett. 101 094102
[12] Sun S and Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese)
[13] Fan K Q, Ming Z F, Xu C H and Chao F B 2013 Chin. Phys. B 22 104502
[14] Boisseau S, Despesse G and Sylvestre A 2010 Smart Mater. Struct. 19 075015
[15] Zorlu Ö Topal E T and Külah H 2011 IEEE Sens. J. 11 481
[16] Hu Y T, Xue H and Hu H P 2007 Smart Mater. Struct. 16 1961
[17] He C, Chen H, Bai F, Fan Z, Sun L, Xu F, Wang J, Liu Y and Zhu K 2012 J. Appl. Phys. 112 126102
[18] He C, Fu X, Xu F, Wang J, Zhu K, Du C and Liu Y 2012 Chin. Phys. B 21 054207
[19] Zhu D B, Tudor M J and Beeby S P 2010 Meas. Sci. Technol. 21 022001
[20] Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C and Puers R 2008 Sens. Actuators A 145 380
[21] Shu Y C and Lien I C 2006 Smart Mater. Struct. 15 1499
[22] Challa V R, Prasad M G and Fisher F T 2011 Smart Mater. Struct. 20 025004
[23] Wischke M, Masur M, Goldschmidtboeing F and Woias P 2010 J. Micromech. Microeng. 20 035025
[24] Lin J T, Lee B and Alphenaar B 2010 Smart Mater. Struct. 19 045012
[25] Tang L H, Yang Y W and Soh C K 2012 J. Intell. Mater. Syst. Struct. 23 1433
[26] Xue H, Hu Y T and Wang Q M 2008 IEEE T. Ultrason. Ferroelectr. Freq. Control 55 2104
[27] Kim I H, Jung H J, Lee B M and Jang S J 2011 Appl. Phys. Lett. 98 214102
[28] Wu H, Tang L H, Yang Y W and Soh C K 2012 Jpn. J. Appl. Phys. 51 040211
[29] Ferrari M, Ferrari V, Guizzetti M, Andó B, Baglio S and Trigona C 2010 Sens. Actuators A 162 425
[30] Stanton S C, McGehee C C and Mann B P 2010 Physica D 239 640
[31] Audó B, Baglio S, Trigona C, Dumas N, Latorre L and Nouet P 2010 J. Micromech. Microeng. 20 125020
[32] Andó B, Baglio S, Latorre L, Maiorca F, Nouet P and Trigona C 2012 Procedia Engineering 47 1065
[33] Andó B, Baglio S, Maiorca F and Trigona C 2012 Procedia Engineering 47 1061
[34] Wu H, Tang L H, Avvari P V, Yang Y W and Soh C K 2013 Proceedings of SPIE Conference on Active and Passive Smart Structures and Integrated Systems 8688 86880B
[35] Su W J, Zu J and Zhu Y 2014 J. Intell. Mater. Syst. Struct. 25 430
[36] Zhu Y and Zu J W 2013 Appl. Phys. Lett. 103 041905
[37] Zhang C L, Yang J S and Chen W Q 2009 Appl. Phys. Lett. 95 013511
[38] Zhang C L and Chen W Q 2010 Appl. Phys. Lett. 96 123507
[39] Saadon S and Sidek O 2011 Energ. Convers. Manage 52 500
[40] Lien I C, Shu Y C, Wu W J, Shiu S M and Lin H C 2010 Smart Mater. Struct. 19 125009
[41] Wickenheiser A M, Reissman T, Wu W J and Garcia E 2010 IEEEASME T. Mech. 15 400
[42] Yang Y W, Zhao L Y and Tang L H 2013 Appl. Phys. Lett. 102 064105
[43] Roundy S and Wright P K 2004 Smart Mater. Struct. 13 1131
[1] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[2] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[3] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[4] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[5] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[6] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊). Chin. Phys. B, 2019, 28(1): 017701.
[7] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[8] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[9] Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe2 monolayer
Ping Liu(刘萍), Zhen-Zhen Qin(秦真真), Yun-Liang Yue(乐云亮), Xu Zuo(左旭). Chin. Phys. B, 2017, 26(2): 027103.
[10] Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6
San-Dong Guo(郭三栋). Chin. Phys. B, 2016, 25(5): 057104.
[11] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[12] Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing
Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民). Chin. Phys. B, 2016, 25(1): 017301.
[13] Optimal satisfaction degree in energy harvesting cognitive radio networks
Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉). Chin. Phys. B, 2015, 24(12): 128401.
[14] Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
Wu Shao-Hua (吴少华), Du Li-Dong (杜利东), Kong De-Yi (孔德义), Ping Hao-Yue (平皓月), Fang Zhen (方震), Zhao Zhan (赵湛). Chin. Phys. B, 2014, 23(4): 044302.
[15] Oscillation of coercivity between positive and negative in MnxGe1-x:H ferromagnetic semiconductor films
Qin Yu-Feng (秦羽丰), Yan Shi-Shen (颜世申), Xiao Shu-Qin (萧淑琴), Li Qiang (李强), Dai Zheng-Kun (代正坤), Shen Ting-Ting (沈婷婷), Yang Ai-Chun (杨爱春), Pei Juan (裴娟), Kang Shi-Shou (康仕寿), Dai You-Yong (代由勇), Liu Guo-Lei (刘国磊), Chen Yan-Xue (陈延学), Mei Liang-Mo (梅良模). Chin. Phys. B, 2013, 22(5): 057503.
No Suggested Reading articles found!