Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 128401    DOI: 10.1088/1674-1056/24/12/128401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimal satisfaction degree in energy harvesting cognitive radio networks

Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉)
State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
Abstract  A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis.
Keywords:  cognitive radio (CR)      energy harvesting (EH)      hidden Markov model (HMM)      whole satisfaction degree (WSD)  
Received:  25 May 2015      Revised:  14 July 2015      Accepted manuscript online: 
PACS:  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
Corresponding Authors:  Li Zan     E-mail:  zanli@xidian.edu.cn

Cite this article: 

Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉) Optimal satisfaction degree in energy harvesting cognitive radio networks 2015 Chin. Phys. B 24 128401

[1] Dohler M, Heath R, Lozano A, Papadias C and Valenzuela R 2011 IEEE Commun. Mag. 49 159
[2] Mitola J and Maguire G Q 1999 IEEE Pers. Commun. 6 13
[3] Haykin S 2005 IEEE JSAC 23 201
[4] Yucek T and Arslan H 2009 IEEE Commun. Surveys Tuts. 11 116
[5] Qi P H, Li Z, Si J B and Xiong T Y 2015 Chin. Phys. B 24 048401
[6] Qi P H, Li Z, Si J B and Gao R 2014 Chin. Phys. B 23 128401
[7] Zhang Q, Liu G B, Y Z Y and Guo J K 2015 Acta Phys. Sin. 64 018404 (in Chinese)
[8] Zhang Q Y, Cao B, Wang Y and Zhang N T 2013 IEEE Wireless Commun. 20 116
[9] Lu X, Wang P, Niyato D and Hossain E 2014 IEEE Wireless Commun. 21 102
[10] Park S and Hong D 2014 IEEE Trans. Wireless Commun. 13 1010
[11] Park S, Kim H and Hong D 2013 IEEE Trans. Wireless Commun. 12 1386
[12] Yin S X, Zhang E, Yin L and Li S F 2013 Proc. IEEE GLOBECOM, December 9-13, 2013, Atlanta, GA, USA, p. 1032
[13] Yin S X, Zhang E, Yin L and Li S F 2013 Proc. IEEE ICC, June 9-13, 2013, Budapest, Hungary, p. 2807
[14] Yin S X, Qu Z W and Li S F 2015 IEEE JSAC 33 407
[15] Yin S X, Zhang E, Qu Z W, Yin L and Li S F 2014 IEEE Trans. Wireless Commun. 13 4693
[16] Usman M and Koo I 2014 IEEE Sensors J. 14 3164
[17] Jeya Pradha J, Kalamkar S S and Banerjee A 2014 IEEE Commun. Lett. 18 1171
[18] Hoang D T, Niyato D, Wang P and Kim D I 2014 IEEE JSAC 32 2039
[19] Park S and Hong D 2013 IEEE Trans. Wireless Commun. 12 1536
[20] Sultan A 2012 IEEE Wireless Commun. Lett. 1 500
[21] Chung W, Park S, Lim S and Hong D 2014 IEEE Trans. Wireless Commun. 13 2601
[22] Lee S, Zhang R and Huang K 2013 IEEE Wireless Commun. Lett. 12 4788
[23] Willkomm D, Machiraju S, Bolot J and Wolisz A 2009 IEEE Commun. Mag. 47 88
[24] Ghosh C, Cordeiro C, Agrawal D and Rao M 2009 Proc. IEEE Int. Conf. Pervasive Comput. Commun. p. 1
[25] Xing X S, Jing T, Li H, Huo Y, Cheng X and Znati T 2013 IEEE Trans. Parallel and Distributed Systems 25 2408
[26] Rabiner L R 1989 Proc. IEEE 77 257
[27] Liang Y C, Zeng Y, Peh E C Y and Hoang A T 2008 IEEE Trans. Wireless Commun. 7 1326
[28] Lin Y C, Wang F S and Hwang K S 1999 Proc. Evolutionary Computation, July 6, 1999, Washington, DC, USA, p. 2159
[29] Yan X F, Yu J, Qi F and Ding J W 2006 Journal of East China University of Science and Technology (Natural Science Edition) 32 94 (in Chinese)
[1] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[2] High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors
Jun-Tao Ma(马俊涛), Mei-Guo Gao(高梅国), Bao-Feng Guo(郭宝锋), Jian Dong(董健), Di Xiong(熊娣), Qi Feng(冯祺). Chin. Phys. B, 2017, 26(10): 108401.
[3] Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method
Zheng-Xian Jiang(江正仙), Bao-Tong Cui(崔宝同), Xu-Yang Lou(楼旭阳), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(4): 040201.
[4] Spherical reconciliation for a continuous-variable quantum key distribution
Zhao Lu(卢钊), Jian-Hong Shi(史建红), Feng-Guang Li(李风光). Chin. Phys. B, 2017, 26(4): 040304.
[5] Cognitive radio adaptation for power consumption minimization using biogeography-based optimization
Pei-Han Qi(齐佩汉), Shi-Lian Zheng(郑仕链), Xiao-Niu Yang(杨小牛), Zhi-Jin Zhao(赵知劲). Chin. Phys. B, 2016, 25(12): 128403.
[6] A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
Qi Pei-Han (齐佩汉), Li Zan (李赞), Si Jiang-Bo (司江勃), Xiong Tian-Yi (熊天意). Chin. Phys. B, 2015, 24(4): 048401.
[7] Research on spatial-variant property of bistatic ISAR imaging plane of space target
Guo Bao-Feng (郭宝锋), Wang Jun-Ling (王俊岭), Gao Mei-Guo (高梅国), Shang Chao-Xuan (尚朝轩), Fu Xiong-Jun (傅雄军). Chin. Phys. B, 2015, 24(4): 048402.
[8] Estimation of spatially distributed processes using mobile sensor networks with missing measurements
Jiang Zheng-Xian (江正仙), Cui Bao-Tong (崔宝同). Chin. Phys. B, 2015, 24(2): 020702.
[9] A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
Qi Pei-Han (齐佩汉), Li Zan (李赞), Si Jiang-Bo (司江勃), Gao Rui (高锐). Chin. Phys. B, 2014, 23(12): 128401.
[10] Signal reconstruction in wireless sensor networks based on a cubature Kalman particle filter
Huang Jin-Wang (黄锦旺), Feng Jiu-Chao (冯久超). Chin. Phys. B, 2014, 23(7): 070504.
[11] The determination of the relative permittivity of periodic stratified media based on the iterative time-reversal method
Zhang Zhi-Min (章志敏), Wang Bing-Zhong (王秉中), Liang Mu-Sheng (梁木生), Ji Qing (纪晴), Song Gang-Bing (宋钢兵). Chin. Phys. B, 2014, 23(4): 048403.
[12] Cognitive radio resource allocation based on coupled chaotic genetic algorithm
Zu Yun-Xiao(俎云霄),Zhou Jie(周杰), and Zeng Chang-Chang(曾昶畅). Chin. Phys. B, 2010, 19(11): 119501.
[13] A novel method of rapidly modeling optical properties of actual photonic crystal fibres
Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷). Chin. Phys. B, 2010, 19(8): 084209.
[14] Model for cascading failures with adaptive defense in complex networks
Hu Ke(胡柯), Hu Tao(胡涛) and Tang Yi(唐翌). Chin. Phys. B, 2010, 19(8): 080206.
[15] Security analysis of a multiple pseudorandom-bit generator based on a spatiotemporal chaotic map
Wang Shi-Hong(王世红) and Li Da(李达). Chin. Phys. B, 2010, 19(8): 080505.
No Suggested Reading articles found!