Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017701    DOI: 10.1088/1674-1056/28/1/017701

Harvesting base vibration energy by a piezoelectric inverted beam with pendulum

Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊)
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China

We proposed a two-degrees-of-freedom inverted piezoelectric beam with pendulum to promote the performance of vibration energy harvesting. This configuration is composed of an inverted elastic beam and a pendulum attached to its free end. The electromechanical equations governing the nonlinear system were derived. The harmonic balance method (HBM) is applied to solve the equation and the results prove that there exists a 1:3 super-harmonic resonance. The simulation results show that owing to the particular nonlinearity, there appears a special bending effect in the amplitude-frequency response, i.e., bending right for the first natural frequency and left for the second natural frequency, which is beneficial for harvesting vibration energy. The HBM results are verified by the entity simulations. Furthermore, over a relatively wide range of power spectral density, it could reach a dense jumping and give a dense high pulse voltage.

Keywords:  stochastic excitation      energy harvesting      inverted piezoelectric beam      pendulum      bi-stable state  
Received:  16 August 2018      Revised:  04 October 2018      Accepted manuscript online: 
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  

Project supported by the National Natural Science Foundation of China (Grant No. 11672237) .

Corresponding Authors:  Wei-Yang Qin     E-mail:

Cite this article: 

Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊) Harvesting base vibration energy by a piezoelectric inverted beam with pendulum 2019 Chin. Phys. B 28 017701

[1] Anton S R and Sodano H A 2007 Smart Mater. & Struct. 16 R1
[2] Daqaq M F, Masana R, Erturk A and Quinn D D 2014 Appl. Mech. Rev. 66 040801
[3] Harne R L and Wang K W 2013 Smart Mater. Struct. 22 023001
[4] Stanton S C, McGehee C C and Mann B P 2010 Physica D 239 640
[5] Tao K, Tang L H, Wu J, Lye S W, Chang H L and Miao J M 2018 J. Microelectromech. Syst. 27 276
[6] Ferrari M, Ferrari V, Guizzetti M, Ando B, Baglio S and Trigona C 2010 Sens. Actuator A-Phys. 162 425
[7] Ferrari M, Bau M, Guizzetti M and Ferrari V 2011 Sens. Actuator APhys. 172 287
[8] Leadenham S and Erturk A 2014 J. Sound Vibr. 333 6209
[9] Kang-Qi, Chun-Hui, Wang, Wei-Dong, Fang and Yang 2014 Chin. Phys. B 23 084501
[10] Chen L Q and Jiang W A 2015 J. Appl. Mech.-Trans. ASME 82 031004
[11] Chen L Q, Jiang W A, Panyam M and Daqaq M F 2016 J. Vib. Acoust.-Trans. ASME 138 061007
[12] Jiang W A, Chen L Q and Ding H 2016 Nonlinear Dyn. 85 2507
[13] Yang W and Towfighian S 2017 Smart Mater. Struct. 26 095008
[14] Xu J W and Tang J O 2017 J. Intell. Mater. Syst. Struct. 28 323
[15] Xu J and Tang J 2015 Appl. Phys. Lett. 107 213902
[16] Xiong L Y, Tang L H and Mace B 2018 Nonlinear Dyn. 91 1817
[17] Xiong L, Tang L and Mace B R 2016 Appl. Phys. Lett. 108 203901
[18] Wu Y P, Ji H L, Qiu J H and Han L 2017 Sens. Actuator A-Phys. 264 1
[19] Gao Y J, Leng Y G, Fan S B and Lai Z H 2014 Acta Phys. Sin. 63 090501 (in Chinese)
[20] Li H T and Qin W Y 2016 Chin. Phys. B 25 110503
[21] Zhang Y Y, Leng Y G, Tan D, Liu J J and Fan S B 2017 Acta Phys. Sin. 66 220502 (in Chinese)
[22] Erturk A, Hoffmann J and Inman D J 2009 Appl. Phys. Lett. 94 254102
[23] Zhou S X, Cao J Y, Erturk A and Lin J 2013 Appl. Phys. Lett. 102 173901
[24] Li H T, Qin W Y, Lan C B, Deng W Z and Zhou Z Y 2016 Smart Mater. Struct. 25 015001
[25] Zhou S X and Zuo L 2018 Commun. Nonlinear Sci. Numer. Simul. 61 271
[26] Lan C and Qin W 2017 Mech. Syst. & Signal Process. 85 71
[27] Bilgen O, Friswell M I, Ali S F and Litak G 2015 Int. J. Struct. Stab. Dyn. 15 1450038
[28] Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A and Litak G 2012 J. Intell. Mater. Syst. Struct. 23 1505
[29] Borowiec M, Litak G, Friswell M I and Adhikari S 2014 Int. J. Structural Stability & Dyn. 14 1440018
[30] Masuda A, Senda A, Sanada T and Sone A 2013 J. Intell. Mater. Syst. Struct. 24 1598
[31] Sebald G, Kuwano H, Guyomar D and Ducharne B 2011 Smart Materials & Structures 20 102001
[32] Su D X, Nakano K, Zheng R C and Cartmell M P 2015 Proc. Inst. Mech. Eng. Part. C-J. Eng. Mech. Eng. Sci. 229 3308
[33] Westermann H, Neubauer M, Wallaschek J and Asme 2012 Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Vol. 2 pp. 803-810
[34] Ando B, Baglio S, Bulsara A R and Marletta V 2014 Sens. Actuator A-Phys. 211 153
[35] Eltanany A M, Yoshimura T, Fujimura N, Ebied M R and Ali M G S 2017 Jpn. J. Appl. Phys. 56 10pd02
[36] Xu C D, Liang Z, Ren B, Di W N, Luo H S, Wang D, Wang K L and Chen Z F 2013 J. Appl. Phys. 114 114507
[1] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[2] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[3] New measuring method of fiber alignment in precision torsion pendulum experiments
Bing-Jie Wang(王冰洁), Li Xu(徐利), Wei-You Zeng(曾维友), Qing-Lan Wang(王晴岚). Chin. Phys. B, 2020, 29(8): 080401.
[4] Nonlinear dynamics of a classical rotating pendulum system with multiple excitations
Ning Han(韩宁) and Pei-Pei Lu(鲁佩佩). Chin. Phys. B, 2020, 29(11): 110502.
[5] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静)†, Li-Qun Chen(陈立群), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[6] Optimal estimation of the amplitude of signal with known frequency in the presence of thermal noise
Jie Luo(罗杰), Jun Ke(柯俊), Yi-Chuan Liu(柳一川), Xiang-Li Zhang(张祥莉), Wei-Ming Yin(殷蔚明), Cheng-Gang Shao(邵成刚). Chin. Phys. B, 2019, 28(10): 100401.
[7] Determination of the thermal noise limit in test of weak equivalence principle with a rotating torsion pendulum
Wen-Ze Zhan(占文泽), Jie Luo(罗杰), Cheng-Gang Shao(邵成刚), Di Zheng(郑第), Wei-Ming Yin(殷蔚明), Dian-Hong Wang(王典洪). Chin. Phys. B, 2017, 26(9): 090401.
[8] Influence of the colored noise on determining the period of a torsion pendulum
Jie Luo(罗 杰), Wen-Ze Zhan(占文泽), Wei-Huang Wu(巫伟皇), Cheng-Gang Shao(邵成刚), Dian-Hong Wang(王典洪). Chin. Phys. B, 2016, 25(8): 080401.
[9] Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system
Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳). Chin. Phys. B, 2016, 25(11): 110503.
[10] Optimal satisfaction degree in energy harvesting cognitive radio networks
Li Zan (李赞), Liu Bo-Yang (刘伯阳), Si Jiang-Bo (司江勃), Zhou Fu-Hui (周福辉). Chin. Phys. B, 2015, 24(12): 128401.
[11] Broadband energy harvesting via magnetic coupling between two movable magnets
Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳). Chin. Phys. B, 2014, 23(8): 084501.
[12] Collective dynamics in a non-dissipative two-coupled pendulum system
Chen Zi-Chen (陈子辰), Li Bo (李博), Qiu Hai-Bo (邱海波), Xi Xiao-Qiang (惠小强). Chin. Phys. B, 2014, 23(5): 050506.
[13] Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
Wu Shao-Hua (吴少华), Du Li-Dong (杜利东), Kong De-Yi (孔德义), Ping Hao-Yue (平皓月), Fang Zhen (方震), Zhao Zhan (赵湛). Chin. Phys. B, 2014, 23(4): 044302.
[14] Physical analysis on improving the recovery accuracy of the Earth’s gravity field by a combination of satellite observations in along-track and cross-track directions
Zheng Wei (郑伟), Hsu Hou-Tse (许厚泽), Zhong Min (钟敏), Yun Mei-Juan (员美娟). Chin. Phys. B, 2014, 23(10): 109101.
No Suggested Reading articles found!