Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 116101    DOI: 10.1088/1674-1056/adfdc4
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Efficient thermal rectification in nitrogen-doped carbon nanotube heterostructures

Zhibo Xing(邢志博)1, Yingguang Liu(刘英光)1,2,†, Haochen Liu(刘浩宸)1, Yahao Wang(王雅浩)1, Cheng Zhang(张成)1, and Ning Wu(吴宁)1
1 Department of Power Engineering, School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China;
2 Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, China
Abstract  Carbon nanotubes (CNTs) are widely used in various fields owing to their unique properties. In this study, three different types of nitrogen-doped CNT heterojunctions were constructed: parallel-doped (PCNT), vertically doped (VCNT), and mesh-doped (MCNT). Non-equilibrium molecular dynamics (NEMD) simulations were conducted to investigate their heat flux and thermal rectification (TR) effects. The results show that heat flux preferentially flows from nitrogen-doped regions to undoped regions, exhibiting distinct thermal rectification behavior, with PCNT showing the most pronounced effect. Interestingly, the TR ratio of the zigzag PCNT is significantly higher than that of the armchair PCNT. Subsequently, we examined the effects of system length and diameter on the TR ratio of the PCNT and found that the TR ratio increases and then decreases with increasing model length. In addition, the effect of defect density on the heat flux of the PCNT is peculiar. The phonon density of states, phonon dispersion, participation ratio, and phonon spectral heat flux were analyzed to elucidate the thermal transport behavior of phonons in the nanotubes. This study provides insights into the development and design of nitrogen-doped CNT thermal rectifiers.
Keywords:  carbon nanotube heterojunction      nitrogen doping      thermal rectification      nonequilibrium molecular dynamics  
Received:  27 May 2025      Revised:  15 August 2025      Accepted manuscript online:  21 August 2025
PACS:  61.46.-w (Structure of nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  44.10.+i (Heat conduction)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52476071) and the Natural Science Foundation of Hebei Province (Grant No. A2024502008).
Corresponding Authors:  Yingguang Liu     E-mail:  yingguang266@126.com

Cite this article: 

Zhibo Xing(邢志博), Yingguang Liu(刘英光), Haochen Liu(刘浩宸), Yahao Wang(王雅浩), Cheng Zhang(张成), and Ning Wu(吴宁) Efficient thermal rectification in nitrogen-doped carbon nanotube heterostructures 2025 Chin. Phys. B 34 116101

[1] Starr C 1936 Phys. Rev. 7 15
[2] Li N, Ren J, Wang L, Zhang G, Hanggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[3] Ding Y F, Zhu G M, Shen X Y, Bai X and Li B W 2022 Chin. Phys. B 31 126301
[4] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[5] Yang X, Wang S, Wang C, Lu R, Zheng X, Zhang T, Liu M, Zheng J and Chen H 2022 ACS Appl. Mater. Interfaces 14 4434
[6] Maleki H, Fischer T, Bohr C, Auer J, Mathur S and Milow B 2021 Biomacromolecules 22 1739
[7] Ma R, Wu D, Liu Y, Ye H and Sutherland D 2020 Mater. Des. 188 108407
[8] Li Y, Li J, Qi M, Qiu C W and Chen H 2021 Phys. Rev. B 103 014307
[9] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[10] Chen X K, Pang M, Chen T, Du D and Chen K Q 2020 ACS Appl. Mater. Interfaces 12 15517
[11] Chen X, Xie Z, Zhou W, Tang L and Chen K 2016 Carbon 100 492
[12] Wu N, Liu Y, Wang S, Xing Z, Li H and Li X 2024 Int. J. Heat Mass Transfer 221 125097
[13] Wang Y, Chen S and Ruan X 2012 Appl. Phys. Lett. 100 163101
[14] Yang B, Li D, Qi L, Li T and Yang P 2019 Phys. Lett. A 383 1306
[15] Gordiz K and Vaez Allaei S M 2014 J. Appl. Phys. 115 163512
[16] Lee J, Varshney V, Roy A K, Ferguson J B and Farmer B L 2012 Nano Lett. 12 3491
[17] Zhang Z, Chen Y, Xie Y and Zhang S 2016 Appl. Therm. Eng. 102 1075
[18] Liu B, Baimova J A, Reddy C D, Dmitriev S V, Law W K, Feng X Q and Zhou K 2014 Carbon 79 236
[19] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[20] Liu Y Y, Zhou W X, Tang L M and Chen K Q 2014 Appl. Phys. Lett. 105 051905
[21] Gordiz K, Vaez Allaei S and Kowsary F 2011 Appl. Phys. Lett. 99 251901
[22] Zhang T and Luo T 2015 Small 11 4657
[23] Cottrill A L, Wang S, Liu A T, Wang W J and Strano M S 2018 Adv. Energy Mater. 8 1702692
[24] Iijima S 1991 Nature 354 56
[25] Aiyiti A, Zhang Z, Chen B, Hu S, Chen J, Xu X and Li B 2018 Carbon 140 673
[26] Chen X K, Xie Z X, Zhang Y, Deng Y X, Zou T H, Liu J and Chen K Q 2019 Carbon 148 532
[27] Zhuang S and Liu Y 2020 J. Phys. Chem. Lett. 11 9731
[28] Yang P, Li X, Yang H, Wang X, Tang Y and Yuan X 2013 Appl. Phys. A 112 759
[29] Chien S K and Yang Y T 2010 Phys. Lett. A 374 4885
[30] Zhang X, Han G and Zhu S 2024 Small 20 2305406
[31] Guo L R, Song K B, Li Y J and Li Y G 2023 Acta Phys. Sin. 72 013102 (in Chinese)
[32] Plimpton S 1995 J. Comput. Phys. 117 1
[33] Ghasemi H, Abraham B, Rutledge J and Yazdani H 2020 Diamond Relat. Mater. 109 108090
[34] Cheng X and Wang X 2019 Nanotechnology 30 255401
[35] Melchionna S, Ciccotti G and Holian B L 1993 Mol. Phys. 78 533
[36] Berendsen H J, Postma J V, Van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[37] Song J, Xu Z and He X 2020 Int. J. Heat Mass Transfer 157 119954
[38] Farzadian O, Razeghiyadaki A, Spitas C and Kostas K 2020 Nanotechnology 31 485401
[39] Le M Q 2014 Meccanica 49 1709
[40] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420
[41] Liang T, Zhou M, Zhang P, Yuan P and Yang D 2020 Int. J. Heat Mass Transfer 151 119395
[42] Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen Y P and Ruan X 2014 Nano Lett. 14 592
[43] Yang N, Zhang G and Li B 2009 Appl. Phys. Lett. 95 033107
[44] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[45] Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z and Chen J 2020 J. Appl. Phys. 127 235101
[46] Wu N, Liu Y, Wang S and Xing Z 2024 ACS Appl. Mater. Interfaces 16 9155
[47] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[48] Saäskilahti K, Oksanen J, Tulkki J and Volz S 2014 Phys. Rev. B 90 134312
[49] Ma Y, Zhang Z, Chen J, Saäskilahti K, Volz S and Chen J 2018 Carbon 135 263
[50] Sha W, Dai X, Chen S and Guo F 2022 Diamond Relat. Mater. 129 109341
[51] Dong Y, Diao C, Song Y, Chi H, Singh D J and Lin J 2019 Phys. Rev. Appl. 11 024043
[52] Diao C, Yang Z, Dong Y and Duan Y 2020 Int. J. Heat Mass Transfer 157 119851
[1] Giant thermal rectification beyond structural asymmetry via current-induced nonreciprocity effects
Jiayao Zhang(张佳瑶), Yu Hao(郝雨), Bowen Xiong(熊博文), Shanhe Su(苏山河), and Zhimin Yang(杨智敏). Chin. Phys. B, 2025, 34(9): 094402.
[2] Thermal diode with switchable cloaking effect enabled by asymmetric temperature-dependent thermal conductivity
Mengzhen Xue(薛梦贞), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2025, 34(11): 114403.
[3] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[4] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[5] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[6] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[7] Reversal of thermal rectification in one-dimensional nonlinear composite system
Zhan Si-Qi (詹斯琦), Huang Wei-Qing (黄维清), Huang Gui-Fang (黄桂芳). Chin. Phys. B, 2014, 23(11): 114401.
[8] Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy
Wu Mu-Hong (吴慕鸿), Li Xiao (李晓), Pan Ding (潘鼎), Liu Lei (刘磊), Yang Xiao-Xia (杨晓霞), Xu Zhi (许智), Wang Wen-Long (王文龙), Sui Yu (隋郁), Bai Xue-Dong (白雪冬). Chin. Phys. B, 2013, 22(8): 086101.
[9] Evolution of the structural and optical properties of silver oxide films with different stoichiometries deposited by direct-current magnetron reactive sputtering
Zhao Meng-Ke(赵孟珂), Liang Yan(梁艳), Gao Xiao-Yong(郜小勇), Chen Chao(陈超), Chen Xian-Mei(陈先梅), and Zhao Xian-Wei(赵显伟) . Chin. Phys. B, 2012, 21(6): 066101.
[10] Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films
Gu Li-Ping (顾利萍), Tang Chun-Jiu (唐春玖), Jiang Xue-Fan (江学范), J. L. Pinto. Chin. Phys. B, 2011, 20(5): 058104.
[11] Effects of B and N dopings and H2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes
Wang Yi-Jun(王益军), Wang Liu-Ding(王六定), Yang Min(杨敏), and Yan Cheng(严诚) . Chin. Phys. B, 2011, 20(11): 117304.
No Suggested Reading articles found!