Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 115203    DOI: 10.1088/1674-1056/addcd0
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Impact of mass concentration variations on plasma dynamics in a laser-ablated CH target

Hafiz Muhammad Siddique1,2, Guannan Zheng(郑冠男)1,2, Tao Tao(陶弢)1,2, Xiao-Bao Jia(贾晓宝)1,2, and Jian Zheng(郑坚)1,2,3,†
1 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China;
2 Chinese Academy of Sciences (CAS) Key Laboratory of Frontier Physics in Controlled Nuclear Fusion, University of Science and Technology of China, Hefei 230026, China;
3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Laser-produced plasmas in the field of inertial confinement fusion usually consist of multiple ion species with different atomic numbers and charge-to-mass ratios. With the presence of various plasma gradients, ion diffusion is driven, causing ion concentration to evolve and deviate from its initial value. In order to investigate the effect of ion diffusion on laser-produced plasmas, we implement an ion diffusion module within the radiation-hydro code MULTI-1D [Comput. Phys. Commun. 203 226 (2016)]. Under the planar target geometry and simulation parameters considered in this study, ion species separation primarily occurs near ablation front and underdense region. Although ion diffusion just has a slight impact on plasma hydrodynamics such as density, temperature and pressure profiles, it could have significant influence on the processes in relevant to ion-acoustic wave, whose damping rate depends sensitively on ion concentration. It is found that the coupling factor of cross-beam energy transfer (CBET) could change a lot when ion diffusion is taken into account, indicating that ion diffusion could play important role in laser fusion.
Keywords:  mass diffusion      ion transport      species separation      hydrodynamic simulation  
Received:  09 March 2025      Revised:  29 April 2025      Accepted manuscript online:  26 May 2025
PACS:  52.57.-z (Laser inertial confinement)  
  52.38.-r (Laser-plasma interactions)  
  52.25.Dg (Plasma kinetic equations)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No. 12375242) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25010200).
Corresponding Authors:  Jian Zheng     E-mail:  jzheng@ustc.edu.cn

Cite this article: 

Hafiz Muhammad Siddique, Guannan Zheng(郑冠男), Tao Tao(陶弢), Xiao-Bao Jia(贾晓宝), and Jian Zheng(郑坚) Impact of mass concentration variations on plasma dynamics in a laser-ablated CH target 2025 Chin. Phys. B 34 115203

[1] Atzeni S and Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Clarendon Press)
[2] Lindl J 1995 Phys. Plasmas 2 3933
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[4] Craxton R, Anderson K, Boehly T, Goncharov V, Harding D, Knauer J, McCrory R, McKenty P, Meyerhofer D, Myatt J, et al. 2015 Phys. Plasmas 22 11
[5] Landau L D and Lifshitz E M 1987 Fluid Mechanics, 2nd edn. (Pergamon Press)
[6] Kagan G and Tang X Z 2012 Phys. Plasmas 19 8
[7] Hu S X, Fiksel G, Goncharov V N, Skupsky S, Meyerhofer D D and Smalyuk V A 2012 Phys. Rev. Lett. 108 195003
[8] Fiksel G, Hu S X, Goncharov V A, Meyerhofer D D, Sangster T C, Smalyuk V A, Yaakobi B, Bonino M J and Jungquist R 2012 Phys. Plasmas 19 062704
[9] Zheng G, Tao T, Jia Q, Yan R and Zheng J 2022 Plasma Physics and Controlled Fusion 64 105003
[10] Williams E A, Berger R L, Drake R P, Rubenchik A M, Bauer B S, Meyerhofer D D, Gaeris A C and Johnston T W 1995 Phys. Plasmas 2 129
[11] Neumayer P, Berger R L, Divol L, Froula D H, London R A, MacGowan B J, Meezan N B, Ross J S, Sorce C, Suter L J and Glenzer S H 2008 Phys. Rev. Lett. 100 105001
[12] Glenzer S H, MacGowan B J, Michel P, et al. 2010 Science 327 1228
[13] Kritcher A L, Zylstra A B, Weber C R, et al. 2024 Phys. Rev. E 109 25204
[14] Michel P, Rozmus W, Williams E A, Divol L, Berger R L, Glenzer S H and Callahan D A 2013 Phys. Plasmas 20 5
[15] Michel P 2023 Introduction to laser-plasma interactions (Springer Nature)
[16] Ramis R and Meyer-ter Vehn J 2016 Comput. Phys. Commun. 203 226
[17] Ramis R, Eidmann K, Meyer-ter Vehn J and Huller S 2012 Comput. Phys. Commun. 183 637
[18] Hsu S C, Joshi T R, Hakel P, Vold E L, Schmitt M J, Hoffman N M, Rauenzahn R M, Kagan G, Tang X Z, Mancini R C, et al. 2016 Europhys. Lett. 115 65001
[19] Joshi T R, Hakel P, Hsu S C, Vold E L, Schmitt M J, Hoffman N M, Rauenzahn R M, Kagan G, Tang X Z, Mancini R, et al. 2017 Phys. Plasmas 24
[20] Joshi T R, Hsu S C, Hakel P, Hoffman N M, Sio H and Mancini R 2019 Phys. Plasmas 26
[21] Lu Y J, Tao T, Zhao B and Zheng J 2023 Acta Phys. Sin. 72 075201 (in Chinese)
[22] Kagan G and Tang X Z 2014 Phys. Lett. A 378 1531
[23] Faik S, Tauschwitz A and Iosilevskiy I 2018 Comput. Phys. Commun. 227 117
[24] Abdallah J Jr and Clark R E 1985 Tops: A multigroup opacity code, Tech. Rep. Los Alamos National Lab., NM (USA)
[25] Williams E, Berger R, Drake R, Rubenchik A, Bauer B, Meyerhofer D, Gaeris A and Johnston T 1995 Phys. Plasmas 2 129
[26] Weber C, Clark D, Cook A, Busby L and Robey H 2014 Phys. Rev. E 89 053106
[1] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[2] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[3] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[4] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[5] Alternative constitutive relation for momentum transport of extended Navier-Stokes equations
Guo-Feng Han(韩国锋), Xiao-Li Liu(刘晓丽), Jin Huang(黄进), Kumar Nawnit, and Liang Sun(孙亮). Chin. Phys. B, 2020, 29(12): 124701.
[6] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[7] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[8] An improved recommendation algorithm via weakening indirect linkage effect
Chen Guang (陈光), Qiu Tian (邱天), Shen Xiao-Quan (沈小泉). Chin. Phys. B, 2015, 24(7): 078901.
[9] Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors
Ge Ji(葛霁), Liu Hong-Gang(刘洪刚), Su Yong-Bo(苏永波), Cao Yu-Xiong(曹玉雄), and Jin Zhi(金智) . Chin. Phys. B, 2012, 21(5): 058501.
[10] Characteristic parameters of diffusive supersonic radiation transport in low density materials
Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Zheng Zhi-Jian(郑志坚), and Ding Yong-Kun(丁永坤). Chin. Phys. B, 2007, 16(1): 193-199.
No Suggested Reading articles found!