Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 114403    DOI: 10.1088/1674-1056/ae118b
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Thermal diode with switchable cloaking effect enabled by asymmetric temperature-dependent thermal conductivity

Mengzhen Xue(薛梦贞), Jun Wang(王军)†, and Guodong Xia(夏国栋)
Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
Abstract  Thermal rectification refers to the asymmetry in heat transfer capability when subjected to forward and reverse temperature gradients. A thermal cloak can render objects invisible in thermal fields by redirecting heat flux pathways. In this paper, we present a thermal diode model based on a bi-layer thermal cloak system that incorporates a composite heat-fluxattracting layer with asymmetric, temperature-dependent thermal conductivity. In the forward case, the heat flux bypasses the cloaking region while maintaining undistorted background isotherm contours, whereas in the reverse case, the thermal cloak fails to function and the device effectively insulates heat. Consequently, thermal rectification occurs in the bi-layer thermal cloak system. A significant increase in the thermal rectification ratio is observed as the temperature gradient increases. By optimizing the system dimensions, a peak rectification ratio of 11.06 is achieved. This study provides physical insight and a design framework for developing novel thermal diodes with dual-functional thermal management capabilities.
Keywords:  thermal rectification      thermal cloak      temperature-dependent thermal conductivity      bulk material  
Received:  13 June 2025      Revised:  16 September 2025      Accepted manuscript online:  10 October 2025
PACS:  44.10.+i (Heat conduction)  
  05.60.-k (Transport processes)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Corresponding Authors:  Jun Wang     E-mail:  jwang@bjut.edu.cn

Cite this article: 

Mengzhen Xue(薛梦贞), Jun Wang(王军), and Guodong Xia(夏国栋) Thermal diode with switchable cloaking effect enabled by asymmetric temperature-dependent thermal conductivity 2025 Chin. Phys. B 34 114403

[1] Li N B, Ren J,Wang L, Zhang G, Hänggi P and Li BW2012 Rev. Mod. Phys. 84 1045
[2] Ding Y F, Zhu G M, Shen X Y, Bai X and Li B W 2022 Chin. Phys. B 31 126301
[3] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[4] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[5] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302
[6] Kuo D M T and Chang Y C 2010 Phys. Rev. B 81 205321
[7] Roberts N A and Walker D G 2012 J. Heat Transfer 133 092401
[8] Xie R G, Bui C T, Varghense B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 Adv. Funct. Mater. 21 1602
[9] Li T, Jiang W T, Zhang Y, Li B T, Wang L L, Niu D, Liu H Z, Yin L, Shi Y S, Chen B D, Chen J J, Liu X K and Peng D L 2022 Adv. Funct. Mater. 32 2111229
[10] Joulain K, Derevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 115 200601
[11] Zhang Y C, Yang Z M, Zhang X, Lin B H, Lin G X and Chen J C 2018 Europhys. Lett. 122 17002
[12] Klinar K, Rojo M M, Kutnjak Z and Kitanovski A 2020 J. Appl. Phys. 127 234101
[13] Lyu J, Sheng Z Z, Xu Y Y, Liu C M and Zhang X T 2022 Adv. Funct. Mater. 32 2200137
[14] Chang CW, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[15] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 033107
[16] Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[17] Wang J and Zheng Z G 2010 Phys. Rev. E 81 011114
[18] Shrestha R, Luan Y, Luo X, Shin S, Zhang T, Smith P, Gong W, Bockstaller M, Luo T, Chen R, Hippalgaonkar K and Shen S 2020 Nat. Commun. 11 4346
[19] Li H Y, Wang J and Xia G D 2023 Chin. Phys. B 32 054401
[20] Cao B, Han C Z, Hao X, Wang C and Lu J C 2024 Chin. Phys. Lett. 41 077302
[21] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[22] Peyrard M 2006 Europhys. Lett. 76 49
[23] Hu B, He D, Yang L and Zhang Y 2006 Phys. Rev. E 74 060201
[24] Dames C 2009 J. Heat Transfer 131 061301
[25] Go D B and Sen M 2010 J. Heat Transfer 132 124502
[26] Wang J, Shao C R, Li H Y and Xia G D 2022 Int. J. Heat Mass Transfer 188 122627
[27] Du F Y, Zhang W, Wang H Q and Zheng J C 2023 Chin. Phys. B 32 064402
[28] Li Y, Li J X, Qi M H, Qiu C W and Chen H S 2021 Phys. Rev. B 103 014307
[29] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[30] Li Y, Shen X Y, Huang J P and Ni Y S 2016 Phys. Lett. A 380 1641
[31] Xue M Z, Wang J and Xia G D 2025 Int. J. Heat Mass Transfer 240 126647
[32] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[33] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[34] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[35] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[36] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
[37] Zhang J, Zhang H C, Huang Z L, Sun B W and Li Y Y 2022 Chin. Phys. B 31 014402
[38] Sun T,Wang X H, Yang X Y, Meng T, He R Y andWang Y X 2022 Int. J. Heat Mass Transfer 187 122568
[39] Feng H L, Zhang X W, Zhou L M, Zhang Y K and Ni Y S 2024 Chin. Phys. B 33 038102
[40] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[41] Nguyen D M, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901
[42] Han T C, Yang P, Li Y, Lei D Y, Li B W, Hippalgaonkar K and Qiu C W 2018 Adv. Mater. 30 1804019
[43] Su C, Xu L J and Huang J P 2020 Europhys. Lett. 130 34001
[44] Shan Q R, Shao C R, Wang J and Xia G D 2023 Chin. Phys. Lett. 40 104401
[45] Xu L J, Jiang C R, Shang J, Wang R Z and Huang J P 2017 Eur. Phys. J. B 90 221
[46] Uyanna O and Najafi H 2020 Acta Astronaut. 176 341
[47] Yang Y, Chen H Y, Wang H, Li N B and Zhang L F 2018 Phys. Rev. E 98 042131
[48] Herrera F A, Luo T F and Go D B 2018 J. Heat Transfer 139 091301
[49] Oh D W, Ko C, Ramanathan S and Cahill D G 2010 Appl. Phys. Lett. 96 151906
[50] Liu L N, Hou Y, Yin X Z, Zhang F and Peng Z F 2018 Funct. Mater. Lett. 12 1950015
[51] Zhang T and Lou T F 2013 ACS Nano 7 7592
[1] Giant thermal rectification beyond structural asymmetry via current-induced nonreciprocity effects
Jiayao Zhang(张佳瑶), Yu Hao(郝雨), Bowen Xiong(熊博文), Shanhe Su(苏山河), and Zhimin Yang(杨智敏). Chin. Phys. B, 2025, 34(9): 094402.
[2] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[3] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[4] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[5] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[6] Reversal of thermal rectification in one-dimensional nonlinear composite system
Zhan Si-Qi (詹斯琦), Huang Wei-Qing (黄维清), Huang Gui-Fang (黄桂芳). Chin. Phys. B, 2014, 23(11): 114401.
No Suggested Reading articles found!