Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114401    DOI: 10.1088/1674-1056/23/11/114401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reversal of thermal rectification in one-dimensional nonlinear composite system

Zhan Si-Qi (詹斯琦), Huang Wei-Qing (黄维清), Huang Gui-Fang (黄桂芳)
Department of Applied Physics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China
Abstract  

Using nonequilibrium molecular dynamics simulations, a comprehensive study of the asymmetric heat conduction in the composite system consisting of the Frenkel-Kontorova (FK) model and Fermi-Pasta-Ulam (FPU) model is conducted. The calculated results show that in a larger system, the rectifying direction can be reversed only by adjusting the thermal bias. Moreover, the rectification reversal depends critically on the system size and the properties of the interface. The mechanisms of the two types of asymmetric heat conduction induced by nonlinearity are discussed. Considering the novel asymmetric heat conduction in the system, it may possess possible applications to manage the thermal rectification in situ directionally without re-building the structure.

Keywords:  thermal rectification      reversal      nonlinearity      composite system  
Received:  07 March 2014      Revised:  29 April 2014      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  63.20.Ry (Anharmonic lattice modes)  
Fund: 

Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ3009), the Changsha Science and Technology Plan Projects, China, and the Science and Technology Plan Projects of Hunan Province, China (Grant No. 2013SK3148).

Corresponding Authors:  Huang Wei-Qing     E-mail:  wqhuang@hnu.edu.cn

Cite this article: 

Zhan Si-Qi (詹斯琦), Huang Wei-Qing (黄维清), Huang Gui-Fang (黄桂芳) Reversal of thermal rectification in one-dimensional nonlinear composite system 2014 Chin. Phys. B 23 114401

[1] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[2] Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992
[3] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[4] Livi R and Lepri S 2003 Nature 421 327
[5] Prosen T and Campbell D K 2005 Chaos 15 015117
[6] Gaul C and Buettner H 2007 Phys. Rev. E 76 011111
[7] Zhong Y, Zhang Y, Wang J and Zhao H 2013 Chin. Phys. B 22 070505
[8] Li H B and Li Z 2010 Chin. Phys. B 19 054401
[9] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[10] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[11] Li B W, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[12] Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208
[13] Kapitza P L 1941 J. Phys. 4 181
[14] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[15] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302
[16] Zhang L F, Yan Y H, Wu C Q, Wang J S and Li B W 2009 Phys. Rev. B 80 172301
[17] Wu L A and Segal D 2009 Phys. Rev. Lett. 102 095503
[18] Zhang L, Wang J S and Li B 2010 Phys. Rev. B 81 100301
[19] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 033107
[20] Yang N, Zhang G and Li B W 2008 Appl. Phys. Lett. 93 243111
[21] Wu G and Li B W 2007 Phys. Rev. B 76 085424
[22] Xu H, Cui M L and Ma S S 2010 Acta Phys. Sin. 59 7266 (in Chinese)
[23] Zhang M P, Zhong W R and Ai B Q 2011 Acta Phys. Sin. 60 060511 (in Chinese)
[24] Zhang M P, Zhong W R and Ai B Q 2011 Chin. Phys. B 20 100508
[25] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[26] Kobayashi W, Teraoka Y and Terasaki I 2009 Appl. Phys. Lett. 95 171905
[27] Sawaki D, Kobayashi W and Moritomo Y 2011 Appl. Phys. Lett. 98 081915
[28] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep. 2 523
[29] Yang N, Li N B, Wang L and Li B W 2007 Phys. Rev. B 76 020301
[30] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[31] Wang J, Li J Y and Zheng Z G 2010 Acta Phys. Sin. 59 476 (in Chinese)
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] On the origin of the anomalous sign reversal in the Hall effect in Nb thin films
Dan Zhou(周丹), Han-Song Zeng(曾寒松), Rujun Tang(汤如俊), Zhihong Hang(杭志宏), Zhiwei Hu(胡志伟), Zixi Pei(裴子玺), and Xinsheng Ling(凌新生). Chin. Phys. B, 2022, 31(3): 037403.
[6] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[7] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[8] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[9] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[10] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[11] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[12] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[13] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[14] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[15] Location of micro-cracks in plates using time reversed nonlinear Lamb waves
Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(5): 054301.
No Suggested Reading articles found!