Using nonequilibrium molecular dynamics simulations, a comprehensive study of the asymmetric heat conduction in the composite system consisting of the Frenkel-Kontorova (FK) model and Fermi-Pasta-Ulam (FPU) model is conducted. The calculated results show that in a larger system, the rectifying direction can be reversed only by adjusting the thermal bias. Moreover, the rectification reversal depends critically on the system size and the properties of the interface. The mechanisms of the two types of asymmetric heat conduction induced by nonlinearity are discussed. Considering the novel asymmetric heat conduction in the system, it may possess possible applications to manage the thermal rectification in situ directionally without re-building the structure.
Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ3009), the Changsha Science and Technology Plan Projects, China, and the Science and Technology Plan Projects of Hunan Province, China (Grant No. 2013SK3148).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.