Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 055201    DOI: 10.1088/1674-1056/28/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations

Aamir Shahzad1,2,3, Maogang He2, Sheeba Ghani3, Muhammad Kashif1, Tariq Munir1, Fang Yang4
1 Molecular Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad(GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan;
2 Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
3 Department of Physics, University of Engineering and Technology(UET) Lahore, Pakistan;
4 College of Physics, Civil Aviation University of China, Tianjin 300300, China
Abstract  The particle structure of a complex system has been explored through a unique Evans's homogenous nonequilibrium molecular dynamics (HNEMD) simulation technique. The crystalline order-disorder structures (OD-structures) and the corresponding energies of three-dimensional (3D) nonideal complex systems (NICSs) have been measured over a wide range of plasma states (Γ, κ) for a body-centered cubic (BCC) structure. The projected technique provides accurate OD-structures with fast convergence and applicable to very small size effect for different temperatures (≡1/Γ) and constant force field (F*) values. The OD-structure obtained through HNEMD approach is found to be reasonable agreement and more reliable than those earlier identified by simulation approaches and experimental data of NICSs. New simulations of OD-structures show that dusty plasma remains in crystalline (strongly coupled) state at lower temperature and constant F* values, for the whole simulation runs. Our investigations show that the crystalline structure is changed and the particle structure switches from intermediate to disorder (nonideal gaseous) state with an increase of the system's temperature. It has been shown that the long range order shifts toward lower temperature with increasing κ. The presented technique exhibits that the potential energy has a maximum value when the dusty plasma remains in crystalline states (low temperatures), which confirms earlier 3D simulation results.
Keywords:  nonequilibrium molecular dynamics      crystalline structures      nonideal complex systems      dusty plasmas      strongly coupled regime  
Received:  04 October 2018      Revised:  17 February 2019      Accepted manuscript online: 
PACS:  52.27.Gr (Strongly-coupled plasmas)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.Yy (Molecular dynamics methods)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505286 and 11805272).
Corresponding Authors:  Aamir Shahzad     E-mail:  aamir.awan@gcu.ed.pk

Cite this article: 

Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations 2019 Chin. Phys. B 28 055201

[1] Shukla P K and Eliasson B 2009 Rev. Mod. Phys. 81 25
[2] Shahzad A and He M G 2012 Phys. Plasmas 19 083707
[3] Mendis D A 2002 Plasma Sources Sci. Technol. 11 A219
[4] Merlino R and Goree J 2004 Phys. Today 57 32
[5] Whipple E C, Northrop T G and Mendis D A 1985 J. Geophys. Res.: Space Phys. 90 7405
[6] Ehrenreich H and Cohen M H 1959 Phys. Rev. 115 786
[7] Lado F 1978 Phys. Rev. B 17 2827
[8] Shahzad A and He M G 2015 Int. J. Thermophys 36 2565
[9] Shahzad A and He M G 2015 Phys. Plasmas 22 123707
[10] Donkó Z, Hartmann P and Kalman G J 2009 J. Phys.: Conf. Ser. 162 012016
[11] Thomas H M and Morfill G E 1996 Nature 379 806
[12] Bin L, Liu Y H, Chen Y P, Yang S Z and Wang L 2003 Chin. Phys. B 12 765
[13] Shahzad A and He M G 2016 Phys. Plasmas 23 093708
[14] Ikezi H 1986 Phys. Fluids 29 1764
[15] Farouki R T and Hamaguchi S 1993 Phys. Rev. E 47 4330
[16] Hartmann P, Donko Z, Bakshi P M, Kalman G J and Kyrkos S 2007 IEEE Transactions Plasma Science 35 332
[17] Jones M D and Ceperley D M 1996 Phys. Rev. Letters 76 4572
[18] Kong W, Liu S, Wang Q, Hu B and Wang L 2007 J. Phys. A: Math. Theor. 40 1171
[19] Liu Y H, Chen Z Y, Yu M Y, Wang L and Bogaerts A 2006 Phys. Rev. E 73 047402
[20] Kong W, Liu S, Hu B and Wang L 2009 Phys. Rev. E 80 036406
[21] Chu J H and Lin I 1994 Phys. Rev. Lett. 72 4009
[22] Melzer A, Trottenberg T and Piel A 1994 Phys. Lett. A 191 301
[23] Melzer A, Homann A and Piel A 1996 Phys. Rev. E 53 2757
[24] Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B and Mohlmann D 1994 Phys. Rev. Lett. 73 652
[25] Schella A, Miksch T, Melzer A, Schablinski J, Block D, Piel A, Thomsen H, Ludwig P and Bonitz M 2011 Phys. Rev. E 84 056402
[26] Shahzad A and He M G 2012 Contrib. Plasma Phys. 52 667
[27] Piel A and Melzer A 2002 Plasma Physics Controlled Fusion 44 R1
[28] Arp O, Block D, Piel A and Melzer A 2004 Phys. Review Letters 93 165004
[29] Zuzic M, Ivlev A V, Goree J, Morfill G E, Thomas H M, Rothermel H and Goldbeck D D 2000 Phys. Review Letters 85 4064
[30] Yang F, Kong W, Liu S, Shi F and Wang Y 2017 Phys. Plasmas 24 063702
[31] Kong W, Liu S, Yang F, Shi F and Wang Y 2018 Phys. Plasmas 25 083709
[32] Kong W, Yang F, Liu S and Shi F 2016 Phys. Plasmas 23 103705
[33] Evans D J and Morriss G 1990 Statistical Mechanics of Nonequilibrium Liquids (London: Academic) p. 20
[34] Shahzad A, He M G, Haider S I and Feng Y 2017 Phys. Plasmas 24 093701
[35] Shahzad A and He M G 2015 Radiat. Eff. Defects Solids 170 758
[36] Wang Z, Zu X, Gao F, Weber W J and Crocombette J P 2007 Appl. Phys. Lett. 90 161923
[37] Pierleoni C, Ciccotti G and Bernu B 1987 Europhys. Lett. 4 1115
[38] Shahzad A, Haider S I, Kashif M, Shifa M S, Munir T and He M G 2018 Commun. Theor. Phys. 69 704
[39] Shahzad A 2013 AIP Conf. Proc. 1547 173
[40] Shahzad A 2018 Impact of Thermal Conductivity on Energy Technologies (London: InTech) pp. 3-31
[41] Donko Z, Kalman G J and Hartmann P 2008 J. Phys.: Condens. Matter 20 413101
[1] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[2] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
[3] Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution
Zhang Li-Ping(张丽萍), Xue Ju-Kui(薛具奎), and Li Yan-Long(李延龙) . Chin. Phys. B, 2011, 20(11): 115201.
[4] Effects of dust size distribution on nonlinear waves in a dusty plasma
Chen Jian-Hong(陈建宏). Chin. Phys. B, 2009, 18(6): 2121-2128.
[5] Interaction of solitary waves in magnetized warm dusty plasmas with dust charging effects
Xue Ju-Kui (薛具奎). Chin. Phys. B, 2006, 15(3): 562-567.
No Suggested Reading articles found!