Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097301    DOI: 10.1088/1674-1056/ad5d99
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum confinement of carriers in the type-I quantum wells structure

Xinxin Li(李欣欣)1,2,†, Zhen Deng(邓震)1,2,3,†, Yang Jiang(江洋)1,2, Chunhua Du(杜春花)1,2,3, Haiqiang Jia(贾海强)1,2,4, Wenxin Wang(王文新)1,2,4, and Hong Chen(陈弘)1,2,3,4,‡
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 The Yangtze River Delta Physics Research Center, Liyang 213000, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally, it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone. By accounting for all wave vectors, we obtain a certain distribution of carrier energy at each quantized energy level, giving rise to the energy subbands. These results enable carriers to escape from the well under the influence of an electric field. Additionally, we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport. Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands, discovering new physical phenomena, and designing novel devices with superior performance.
Keywords:  energy band      quantum confinement      type-I quantum wells      low-dimensional structures  
Received:  15 June 2024      Revised:  26 June 2024      Accepted manuscript online:  02 July 2024
PACS:  73.21.Fg (Quantum wells)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000), and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021005).
Corresponding Authors:  Hong Chen     E-mail:  hchen@iphy.ac.cn

Cite this article: 

Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘) Quantum confinement of carriers in the type-I quantum wells structure 2024 Chin. Phys. B 33 097301

[1] Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[2] Wang H X, Fu Z L, Shao D X, Zhang Z Z, Wang C, Tan Z Y, Guo X G and Cao J C 2018 Appl. Phys. Lett. 113 171107
[3] Yang M J, Wang F C, Yang C H, Bennett B R and Do T Q 1996 Appl. Phys. Lett. 69 85
[4] Ferry D K, Weinbub J, Nedjalkov M and Selberherr S 2022 Semicond. Sci. Technol. 37 043001
[5] Fu H L, Yan J J, Wu Y J, Zhang R X, Sun J, Shan P J, Wang P J, Zhu Z Y, Pfeiffer L N, West K W, Liu H W, Xie X C and Lin X 2019 Nat. Commun. 10 4351
[6] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[7] Gaponenko S V and Demir H V 2018 Applied Nanophotonics (Cambridge: Cambridge University Press) pp. 52-91
[8] Brum J A and Bastard G 1986 Phys. Rev. B 33 1420
[9] Barbagiovanni E G, Lockwood D J, Simpson P J and Goncharova L V 2014 Appl. Phys. Rev. 1 011302
[10] Kalt H and Klingshirn C F 2019 Semiconductor Optics 1: Linear Optical Properties of Semiconductors 5th Edn. (Chan: Springer International Publishing) pp. 251-271
[11] Day D J, Chung Y, Webb C, Eckstein J N, Xu J M and Sweeny M 1990 Appl. Phys. Lett. 57 1260
[12] Althib H 2021 Results Phys. 22 103943
[13] Encomendero J, Yan R S, Verma A, Islam S M, Protasenko V, Rouvimov S, Fay P, Jena D and Xing H G 2018 Appl. Phys. Lett. 112 103101
[14] Gu Y, Zhang Y G, Ma Y J, Zhou L, Chen X Y, Xi S P and Du B 2015 Appl. Phys. Lett. 106 121102
[15] Yahyazadeh R 2021 Opt. Quantum Electron. 53 571
[16] Xue J, Zhao Y J, Oh S H, Herrington W F, Speck J S, DenBaars S P, Nakamura S and Ram R J 2015 Appl. Phys. Lett. 107 121109
[17] Chen B L 2017 IEEE Trans. Electron Devices 64 1606
[18] Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M and Chen H 2016 Chin. Phys. B 25 117803
[19] Yang H J, Ma Z G, Jiang Y, Wu H Y, Zuo P, Zhao B, Jia H Q and Chen H 2017 Sci. Rep. 7 43357
[20] Li Y F, Jiang Y, Die J H, Wang C W, Yan S, Wu H Y, Ma Z G, Wang L, Jia H Q Wang W X and Chen H 2018 Chin. Phys. B 27 097104
[21] Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M and Chen H 2016 Chin. Phys. Lett. 33 106801
[22] Liu J, Wang L, Sun L, Wang W Q, Wu H Y, Jiang Y, Ma Z G, Wang W X, Jia H Q and Chen H 2018 Acta Phys. Sin. 67 128101 (in Chinese)
[23] Wang W Q, Wang L, Jiang Y, Ma Z G, Sun L, Liu J, Sun Q L, Zhao B, Wang W X, Liu W M, Jia H Q and Chen H 2016 Chin. Phys. B 25 097307
[24] Li X Z, Sun L, Lu J L, Liu J, Yue C, Xie L L, Wang W X, Chen H, Jia H Q and Wang L 2020 Chin. Phys. B 29 038504
[25] Botha J R and Leitch A W R T 1994 Phys. Rev. B 50 18147
[26] Emiliani V, Bonanni B, Frova A, Capizzi M, Martelli F and Stone S S 1995 J. Appl. Phys. 77 5712
[27] Tang X S, Li X X, Yue C, Wang L, Deng Z, Jia H Q, Wang W X, Ji A C, Jiang Y and Chen H 2020 Appl. Phys. Express 13 071009
[28] Grundmann M 2010 The Physics of Semiconductors 2nd Edn. (Heidelberg: Springer-Verlag) pp. 369-374
[29] Milnes A G and Feucht D L 1976 Heterojunctions and Metal Semiconductor Junctions (New York: Academic Press) pp. 1-33
[30] Nag B R 2000 Physics of Quantum Well Devices (Dordrecht: Kluwer Academic Publishers) pp. 22-34
[31] Chadi D J and Cohen M L 1975 Phys. Status Solidi B 68 405
[32] Hermann C and Weisbuch C 1977 Phys. Rev. B 15 823
[33] Schwerdtfeger P 2011 ChemPhysChem 12 3143
[34] Schrödinger E 1926 Ann. Phys. (Berlin) 384 489
[35] Kittel C 1956 Introduction to Solid State Physics 2nd Edn. (New York: John Wiley & Sons) p. 289
[36] Schiff L I 1968 Quantum Mechanics 3 Ed. (New York: McGraw-Hill Book Company) Vol. 2 pp. 19-44
[1] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[2] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[3] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[6] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[7] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[8] Band structure of silicon and germanium thin films based on first principles
Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林). Chin. Phys. B, 2017, 26(3): 037302.
[9] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[10] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
[11] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
[12] Silicon nanoparticles:Preparation, properties, and applications
Chang Huan (常欢), Sun Shu-Qing (孙树清). Chin. Phys. B, 2014, 23(8): 088102.
[13] Introduction to ChinaNANO 2013
Wei Zhi-Xiang (魏志祥), Zhu Xing (朱星). Chin. Phys. B, 2014, 23(8): 088101.
[14] Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁). Chin. Phys. B, 2014, 23(7): 076102.
[15] From self-assembly to quantum guiding:A review of magnetic atomic structures on noble metal surfaces
Cao Rong-Xing (曹荣幸), Zhang Xiao-Pu (张孝谱), Miao Bing-Feng (缪冰锋), Sun Liang (孙亮), Wu Di (吴镝), You Biao (游彪), Ding Hai-Feng (丁海峰). Chin. Phys. B, 2014, 23(3): 038102.
No Suggested Reading articles found!