Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 013701    DOI: 10.1088/1674-1056/ade8e2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Compact dual MOT apparatus of K and Rb for optical tweezer experiment

Kedi Wei(魏可迪), Yangbo Wei(韦样波), Shangjin Li(李上进), and Bo Yan(颜波)†
School of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The optical tweezer experiment with neutral atoms is widely used for quantum information research. Here, we present a compact dual magneto-optical trap (MOT) setup for a two-species optical tweezer. Rubidium (Rb) atoms are directly captured using a vapor MOT, while potassium (K) atoms are collected via a 2-stage MOT. Both the quadratic and gradient magnetic fields required for the MOT and Zeeman slower are created by permanent magnets. With the help of the Zeeman slower, the K MOT loading efficiency is enhanced by a factor of three. After the MOT stage, we apply D$_1$ gray molasses to reduce the temperature of the K atoms to 9 μK. Using this apparatus, both Rb and K are loaded into the optical tweezer.
Keywords:  atom      molecule      ion cooling methods      atom cooling methods  
Received:  04 May 2025      Revised:  21 June 2025      Accepted manuscript online:  27 June 2025
PACS:  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406703 and 2022YFA1404203), the National Natural Science Foundation of China (Grant Nos. 12425408, U21A20437 and 12074337), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR21A040002), and the Fundamental Research Funds for the Central Universities (Grant No. 226-2023-00131).
Corresponding Authors:  Bo Yan     E-mail:  yanbohang@zju.edu.cn

Cite this article: 

Kedi Wei(魏可迪), Yangbo Wei(韦样波), Shangjin Li(李上进), and Bo Yan(颜波) Compact dual MOT apparatus of K and Rb for optical tweezer experiment 2026 Chin. Phys. B 35 013701

[1] Schlosser N, Reymond G, Protsenko I and Grangier P 2001 Nature 411 1024
[2] Zhang X L, Isenhower L, Gill A T, Walker T G and Saffman M 2010 Phys. Rev. A 82 030306
[3] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[4] Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014
[5] Lester B J, Luick N, Kaufman A M, Reynolds CMand Regal C A 2015 Phys. Rev. Lett. 115 073003
[6] Kaufman A M and Ni K K 2021 Nat. Phys. 17 1324
[7] Liu J,Wu X, Feng Y, Zheng M and Li Z 2023 Chin. Phys. B 32 108704
[8] Wen K, Chen H, Yan X, Ren Z, He C, Hajiyev E, Fung Wong P T and Jo G B 2024 Chin. Phys. B 33 120703
[9] Weiss D S, Vala J, Thapliyal A V, Myrgren S, Vazirani U and Whaley K B 2004 Phys. Rev. A 70 040302
[10] Barredo D, de Leseleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021
[11] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024
[12] Sheng C, Hou J, He X, Xu P, Wang K, Zhuang J, Li X, Liu M, Wang J and Zhan M 2021 Phys. Rev. Res. 3 023008
[13] Tian W, Wee W J, Qu A, Lim B J M, Datla P R, Koh V P W and Loh H 2023 Phys. Rev. Appl. 19 034048
[14] Tao R, Ammenwerth M, Gyger F, Bloch I and Zeiher J 2023 arXiv: 2309. 04717
[15] Huft P, Song Y, Graham T M, Jooya K, Deshpande S, Fang C, Kats M and Saffman M 2022 Phys. Rev. A 105 063111
[16] Lorenz N, Festa L, Steinert L M and Gross C 2021 SciPost Phys. 10 052
[17] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletic V and Lukin M D 2017 Nature 551 579
[18] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletic V and Lukin M D 2021 Nature 595 227
[19] Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Laeuchli A M and Browaeys A 2021 Nature 595 233
[20] Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Ataides J P B, Maskara N, Cong I, Gao X, Sales Rodriguez P, Karolyshyn T, Semeghini G, Gullans M J, Greiner M, Vuletic V and Lukin M D 2024 Nature 626 58
[21] Norcia M A, Young A W, Eckner W J, Oelker E, Ye J and Kaufman A M 2019 Science 366 93
[22] Young A W, Eckner W J, Milner W R, Kedar D, Norcia M A, Oelker E, Schine N, Ye J and Kaufman A M 2020 Nature 588 408
[23] Jenkins A, Lis J W, Senoo A, McGrew W F and Kaufman A M 2022 Phys. Rev. X 12 021027
[24] Ni K K, Ospelkaus S, de MirandaMH G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[25] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301
[26] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[27] Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D 2016 Phys. Rev. Lett. 116 205303
[28] Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900
[29] Zhang J T, Yu Y, Cairncross W B, Wang K, Picard L R B, Hood J D, Lin Y W, Hutson J M and Ni K K 2020 Phys. Rev. Lett. 124 253401
[30] Cairncross W B, Zhang J T, Picard L R B, Yu Y, Wang K and Ni K K 2021 Phys. Rev. Lett. 126 123402
[31] Ruttley D K, Guttridge A, Spence S, Bird R C, Le Sueur C R, Hutson J M and Cornish S L 2023 Phys. Rev. Lett. 130 223401
[32] Anand S, Bradley C E, White R, Ramesh V, Singh K and Bernien H 2024 Nat. Phys. 20 1744
[33] Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D J, Shlyapnikov G V and Zhan M 2017 Phys. Rev. Lett. 119 160502
[34] Sheng C, Hou J, He X,Wang K, Guo R, Zhuang J, Mamat B, Xu P, Liu M, Wang J and Zhan M 2022 Phys. Rev. Lett. 128 083202
[35] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S and Guo G C 2015 Phys. Rev. Lett. 114 050502
[36] Li T, Liu M, Qin J, Ren J, Hou J, Liu Y, Yang X, Chu H, Lai Y, Wang S, Jiang J H, Chan C T and Zhu S 2025 Nat. Sci. Rev. 12 nwaf107
[37] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett. 89 023005
[38] Li Y, Liu Z, Wang Y, Wu J, Liu W, Fu Y, Li P, Ma J, Xiao L and Jia S 2023 Chin. Phys. B 32 103701
[39] Tiecke T G, Gensemer S D, Ludewig A andWalraven J TM2009 Phys. Rev. A 80 013409
[40] Lamporesi G, Donadello S, Serafini S and Ferrari G 2013 Rev. Sci. Instrum. 84 063102
[41] Li Z L, Shi Z L and Wang P J 2020 Acta Phys. Sin. 69 126701 (in Chinese)
[42] Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P and Weidemüller M 2017 Phys. Rev. A 96 053415
[43] Lasner Z, Mitra D, Hiradfar M, Augenbraun B, Cheuk L, Lee E, Prabhu S and Doyle J 2021 Phys. Rev. A 104 063305
[44] Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J and Eckel S 2019 Phys. Rev. Appl. 11 064023
[45] YangW, Sun D L, Zhou L,Wang J and Zhan M S 2014 Acta Phys. Sin. 63 153701 (in Chinese)
[46] Giordmaine J A and Wang T C 1960 J. Appl. Phys. 31 463
[47] Salomon G, Fouché L, Wang P, Aspect A, Bouyer P and Bourdel T 2014 Europhys. Lett. 104 63002
[48] Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F and Salomon C 2013 Phys. Rev. A 87 063411
[49] Manetsch H J, Nomura G, Bataille E, Leung K H, Lv X and Endres M 2024 A tweezer array with 6100 highly coherent atomic qubits
[50] Jin M, Zhang X, Liu X, Liang C, Liu J, Hu Z, Li K, Wang G, Yang J, Zhu L and Li G 2023 Nano Lett. 23 4008
[51] Li T, Xu X, Fu B, Wang S, Li B, Wang Z and Zhu S 2021 Photon. Res. 9 1062
[1] Single electron capture in low- and intermediate-energy collisions of Si3,4+ with He
Yingzhou Li(李英卓), Yadong Liu(刘亚东), Yueying Qi(祁月盈), Ling Liu(刘玲), Yizhi Qu(屈一至), and Jianguo Wang(王建国). Chin. Phys. B, 2026, 35(1): 013401.
[2] Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential
Enze Hou(侯恩则), Xiaoyang Wang(王啸洋), and Han Wang(王涵). Chin. Phys. B, 2026, 35(1): 018701.
[3] Co-optimization of linear gain and dynamic range for atomic superheterodyne receivers based on homodyne readout
Chuan Qu(瞿川), Dongqin Guo(郭东琴), and Jian Zhang(张剑). Chin. Phys. B, 2026, 35(1): 013202.
[4] Atomic ensemble-assisted ground-state cooling of a rotating mirror in a triple Laguerre–Gaussian cavity
Xiaoxuan Li(李晓璇), Junfei Chen(陈骏飞), and Qingxia Mu(穆青霞). Chin. Phys. B, 2026, 35(1): 014207.
[5] Time-resolved molecular non-equilibrium spectra in nanosecond laser induced air plasma
Xuteng Zhang(张续腾), Chaobo Yang(杨超博), Xun Yuan(袁勋), Minghong Han(韩明宏), Zhen Cao(曹振), Jiangbo Peng(彭江波), and Xin Yu(于欣). Chin. Phys. B, 2025, 34(9): 094701.
[6] Spiral trajectories of asymmetric molecules
Nan Sheng(盛楠), Shiqi Sheng(盛世奇), Yu-Song Tu(涂育松), Rong-Zheng Wan(万荣正), Zuo-Wei Wang(王作维), Zhanchun Tu(涂展春), and Hai-Ping Fang(方海平). Chin. Phys. B, 2025, 34(8): 080507.
[7] Polarization impact on sensitivity of Rydberg atom-based microwave sensors
Minghao Cai(蔡明皓), Aomao Wei(魏奥贸), Shanshan Chen(陈珊珊), and Yuming Huang(黄聿铭). Chin. Phys. B, 2025, 34(8): 083201.
[8] Effect of side group on mechanically induced conductance switching in 4,40-dipyridyl-based single-molecule junctions
Zhen Wan(万振), Chang-Feng Zheng(郑长风), Lin Liu(刘琳), Yun-Long Ge(葛云龙), Guang-Ping Zhang(张广平), Shuai Qiu(邱帅), Hui Wang(王辉), and Zong-Liang Li(李宗良). Chin. Phys. B, 2025, 34(8): 087202.
[9] Single-molecule investigation of the impacts of fluorescent DNA-binding proteins on DNA mechanical properties
Yaxi Cheng(成雅茜), Shang Gao(高上), Xianqi Ye(叶贤其), Chuang Tan(谭创), and Jie Ma(马杰). Chin. Phys. B, 2025, 34(8): 088702.
[10] Effective working regions of the grating chip for planar-integrated magneto-optics trap
Chang-Jiang Huang(黄长江), Ling-Xiao Wang(王凌潇), Liang Chen(陈梁), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Chang-Ling Zou(邹长铃), and Guo-Yong Xiang(项国勇). Chin. Phys. B, 2025, 34(7): 074211.
[11] Dual-species stimulated deceleration of MgF molecules with Rb atoms
Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(7): 073701.
[12] Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection
Zhengru Li(李正濡), Rui Zhu(朱锐), Huili Liang(梁会力), Shichen Su(宿世臣), and Zengxia Mei(梅增霞). Chin. Phys. B, 2025, 34(7): 078502.
[13] Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules
Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Yi-Chen Wang(王一琛), Jing Ma(马婧), Bo-Dun Liu(刘博敦), Wei Jiang(姜威), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2025, 34(6): 063301.
[14] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[15] Sub-Doppler cooling of magnesium fluoride molecules
Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(6): 063701.
No Suggested Reading articles found!