Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014201    DOI: 10.1088/1674-1056/ade24c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Highly sensitive, multi-stage, and mid-infrared refractive index sensor based on photonic spin Hall effect

Jiaye Ding(丁嘉烨)1,†, Chenglong Wang(汪承龙)1,2,†, Shengli Liu(刘胜利)1, Peng Dong(董鹏)3,á, and Jie Cheng(程杰)1,§
1 School of Science, Jiangsu Province Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 College of Electronic Information Engineering & College of Integrated Circuits, Research Center of Intelligent Sensor and Network Engineering Technology of Jiangsu Province, Nanjing University of Industry Technology, Nanjing 210023, China
Abstract  Surface polaritons, as surface electromagnetic waves propagating along the surface of a medium, have played a crucial role in enhancing photonic spin Hall effect (PSHE) and developing highly sensitive refractive index (RI) sensors. Among them, the traditional surface plasmon polariton (SPP) based on noble metals limits its application beyond the near-infrared (IR) regime due to the large negative permittivity and optical losses. In this contribution, we theoretically proposed a highly sensitive PSHE sensor with the structure of Ge prism-SiC-Si:InAs-sensing medium, by taking advantage of the hybrid surface plasmon phonon polariton (SPPhP) in mid-IR regime. Here, heavily Si-doped InAs (Si:InAs) and SiC excite the SPP and surface phonon polariton (SPhP), and the hybrid SPPhP is realized in this system. More importantly, the designed PSHE sensor based on this SPPhP mechanism achieves the multi-stage RI measurements from 1.00025-1.00225 to 1.70025-1.70225, and the maximal intensity sensitivity and angle sensitivity can be up to 9.4$\times10^{4}$μm/RIU and 245 $^\circ$/RIU, respectively. These findings provide a new pathway for the enhancement of PSHE in mid-IR regime, and offer new opportunities to develop highly sensitive RI sensors in multi-scenario applications, such as harmful gas monitoring and biosensing.
Keywords:  refractive index (RI) sensor      photonic spin Hall effect      mid-IR      multi-stage  
Received:  08 April 2025      Revised:  29 May 2025      Accepted manuscript online:  09 June 2025
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175107), the Qing Lan Project of Jiangsu Province, the Hua Li Talents Program of Nanjing University of Posts and Telecommunications, Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No. YK22-02-08), and the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province, China (Grant No. ZK21-05-09).
Corresponding Authors:  Peng Dong, Jie Cheng     E-mail:  2021101298@niit.edu.cn;chengj@njupt.edu.cn

Cite this article: 

Jiaye Ding(丁嘉烨), Chenglong Wang(汪承龙), Shengli Liu(刘胜利), Peng Dong(董鹏), and Jie Cheng(程杰) Highly sensitive, multi-stage, and mid-infrared refractive index sensor based on photonic spin Hall effect 2026 Chin. Phys. B 35 014201

[1] Hosten O and Kwiat P 2008 Science 319 787
[2] Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
[3] Zhou X X, Xiao Z C, Luo H L andWen S C 2012 Phys. Rev. A 85 9335
[4] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L and Wen S C 2020 Opt. Lett. 45 877
[5] Cheng J, Wang G J, Dong P, Liu D P, Chi F F and Liu S L 2022 Chin. Phys. B 31 014205
[6] Cao Y, Sheng L J, Cheng J H, Mei W and Ling X H 2024 Opt. Laser Technol. 174 110583
[7] Wang L S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2022 APL Photon. 5 016105
[8] Ahlawat L, Kishor K and Sinha R K 2024 Opt. Laser Technol. 170 110183
[9] Dong P, Xiang Y J and Cheng J 2023 Ann. Phys. (Berlin) 536 2300351
[10] Zhou X X, Sheng L J and Ling X H 2018 Sci. Rep. 8 1221
[11] Cheng J, Xiang Y J, Xu J H, Liu S L and Dong P 2022 IEEE Sens. J. 22 12754
[12] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467
[13] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
[14] Jiang X, Wang Q K, Guo J, Chen S Q, Dai X Y and Xiang Y J 2018 Plasmonics 13 1467
[15] Boltasseva A and Atwater H A 2011 Science 331 290
[16] Zhong Y, Malagari S D, Hamilton T and Wasserman D M 2015 J. Nanophotonics 9 093791
[17] Law S, Adams D C, Taylor A M and Wasserman D 2012 Opt. Express 20 12155
[18] Zhang X, Wang Y, Zhao X, Huang T, Zeng S W and Ping P S 2019 IEEE Photon. J. 11 4800808
[19] Cheng J, Wang C L, Li Y M, Zhang Y L, Liu S L and Dong P 2024 Chin. Phys. B 33 084201
[20] Xu Y, Bai P, Zhou X, Akimov Y, Png C E, Ang L K, Knoll W and Wu L 2019 Adv. Opt. Mater. 7 1801433
[21] Kretschmann E and Raether H 1968 Z. Naturforsch. A 23 2135
[22] Dong P, Xiang Y J, Li R Z,Wang C L, Cheng C and Cheng J 2023 Ann. Phys. 535 2300309
[23] Zegadi R, Lorrain N, Meziani S, Dumeige Y, Bodiou L, Guendouz M, Zegadi A and Charrier J 2022 Sensors 22 844
[24] Barnes N P and Piltch M S 1979 J. Opt. Soc. Am. 69 178
[25] Neuner B, Korobkin D, Fietz C, Carole D, Ferro G and Shvets G 2019 Opt. Lett. 34 2667
[26] Luo H, Zhou X, Shu W, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806
[27] Ling X H, Luo H L, Tang M and Wen S C 2012 Chin. Phys. Lett. 29 074209
[28] Liang C K, Wang G H, Deng D M and Zhang T T 2021 Opt. Express 29 29481
[29] Sui J Y, Zou J H, Liao S Y, Li B X and Zhang H F 2023 Appl. Phys. Lett. 122 231105
[30] Sui J Y, Zou J H, Liao S Y, Wan B F and Zhang H F 2024 IEEE Trans. Instrum. Meas. 73 7000109
[31] Ha D T, Thuy D T, Hoa V T, Van T T T and Viet N A 2017 J. Phys.: Conf. Ser. 865 012007
[32] YangWF, Ang L K, ZhangWT, Han J G and Xu X 2023 Opt. Express 31 27041
[33] Zhu J Q, Ruan B X, You Q, Wu L M, Cai H Z and Dai X Y 2018 IEEE Photon. J. 10 5900909
[34] Yang W, Zhang W and Xu Y 2024 Opt. Express 32 42429
[35] Ling X, Xiao W, Chen S, Zhou X, Luo H and Zhou L 2021 Phys. Rev. A 103 033515
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
Jie Cheng(程杰), Chenglong Wang(汪承龙), Yiming Li(李一铭), Yalin Zhang(张亚林), Shengli Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(8): 084201.
[3] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[4] Engineered photonic spin Hall effect of Gaussian beam in antisymmetric parity-time metamaterials
Lu-Yao Liu(刘露遥), Zhen-Xiao Feng(冯振校), Dong-Mei Deng(邓冬梅), and Guang-Hui Wang(王光辉). Chin. Phys. B, 2023, 32(9): 094201.
[5] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[6] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[9] Modeling for heterogeneous multi-stage information propagation networks and maximizing information
Ren-Jie Mei(梅人杰), Li Ding(丁李), Xu-Ming An(安栩明), Ping Hu(胡萍). Chin. Phys. B, 2019, 28(2): 028701.
[10] Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(10): 107506.
[11] Mid-IR dual-wavelength difference frequency generation in uniform grating PPLN using index dispersion control
Chang Jian-Hua (常建华), Sun Qing (孙青), Ge Yi-Xian (葛益娴), Wang Ting-Ting (王婷婷), Tao Zai-Hong (陶在红), Zhang Chuang (张闯). Chin. Phys. B, 2013, 22(12): 124204.
No Suggested Reading articles found!