Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107508    DOI: 10.1088/1674-1056/addce3
Special Issue: SPECIAL TOPIC — Advanced magnonics
TOPICAL REVIEW — Advanced magnonics Prev   Next  

Controlling coupled magnons with pumps

Fan Yang(杨帆)1,†, Chenxiao Wang(王辰笑)1,†, Zhijian Chen(陈志坚)1, Kaixin Zhao(赵恺欣)1, Weihao Liu(刘炜豪)2, Shuhuan Ma(马舒寰)1, Chunke Wei(魏纯可)2, Jiantao Song(宋剑涛)1, Jinwei Rao(饶金威)3,‡, and Bimu Yao(姚碧霂)1,2,§
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
3 School of Physics, Shandong University, Jinan 250100, China
Abstract  Strong coupling effects in magnonic systems are highly promising. They combine the advantages of different quasiparticles and enable energy transfer for coherent information processing. When driven by microwave, electric, or optical pumps, these coupling effects can give rise to intriguing nonlinear phenomena, which have become a focal point in the field of magnonics. This review systematically explores pump-engineered magnon-coupling systems from three perspectives: (1) pump-induced hybridization of magnon modes, (2) nonlinear manipulation of magnon dynamics, and (3) implementation of functional magnonic devices. Unlike conventional cavity-magnon interactions that are constrained by electromagnetic boundaries, pumped coupled magnons are liberated from these restrictions. They can operate over a broad frequency band rather than being confined to discrete modes. An example is the recently discovered pump-induced magnon mode (PIM). These magnons arise from the collective excitations of unsaturated spins driven by microwave pumps. They exhibit reduced damping and photon-number-sensitive splitting characteristics, facilitating waveform-controlled coupling strength and enhanced nonlinearity - features that support phenomena such as magnonic frequency combs (MFCs). By expanding this principle to electric pumping schemes, we bridge fundamental physics and practical device applications, enabling nonreciprocal switching and meter-scale strong coupling. These advances establish high-dimensional control capabilities for coupled magnonics and pave the way for their use as a promising platform for dynamically programmable devices, magnetic-field sensing, and coherent networks.
Keywords:  magnon      strong coupling      magnonic frequency comb      spintronics  
Received:  31 March 2025      Revised:  20 May 2025      Accepted manuscript online:  27 May 2025
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Ds (Spin waves)  
  85.70.Ge (Ferrite and garnet devices)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: This work has been supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0580000), the National Natural Science Foundation of China (Grant Nos. 12204306, 12122413, 12227901, 12474120, and U23A6002), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 23JC1404100 and 22JC1403300), the National Key R&D Program of China (Grant Nos. 2022YFA1404603 and 2023YFA1406604), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2024YQ001), and the Qilu Young Scholar Programs of Shandong University.
Corresponding Authors:  Jinwei Rao, Bimu Yao     E-mail:  raojw@sdu.edu.cn;yaobimu@mail.sitp.ac.cn

Cite this article: 

Fan Yang(杨帆), Chenxiao Wang(王辰笑), Zhijian Chen(陈志坚), Kaixin Zhao(赵恺欣), Weihao Liu(刘炜豪), Shuhuan Ma(马舒寰), Chunke Wei(魏纯可), Jiantao Song(宋剑涛), Jinwei Rao(饶金威), and Bimu Yao(姚碧霂) Controlling coupled magnons with pumps 2025 Chin. Phys. B 34 107508

[1] Takeuchi S, Kim J, Yamamoto Y and Hogue H H 1999 Appl. Phys. Lett. 74 1063
[2] Cova S D and Ghioni M 2011 IEEE Photonics Journal 3 274
[3] Kulish M and Malysh M 2022 Semicond. Phys., Quantum Electron. Optoelectron. 25 68
[4] Hao H, Zhao Q Y, Huang Y H, Deng J, Yang F, Ru S Y, Liu Z, Wan C, Liu H, Li Z J, et al. 2024 Light: Science & Applications 13 25
[5] Wu W, Chen M, Zhang Z, Liu X and Dong Y 2018 Science China Information Sciences 61 1
[6] Zhou X, Bec J, Yankelevich D and Marcu L 2021 Opt. Express 29 20105
[7] Yotter R A and Wilson D M 2003 IEEE Sensors Journal 3 288
[8] Pisani F, Gacemi D, Vasanelli A, Li L, Davies A G, Linfield E, Sirtori C and Todorov Y 2023 Nat. Commun. 14 3914
[9] Hagenmüller D, Schachenmayer J, Schütz S, Genes C and Pupillo G 2017 Phys. Rev. Lett. 119 223601
[10] Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, et al. 2015 Nat. Mater. 14 1123
[11] Hu S Q, Zhao H, Lian C, Liu X B, Guan M X and Meng S 2022 npj Quantum Materials 7 14
[12] Liu X B, Hu S Q, Chen D, Guan M, Chen Q and Meng S 2022 Nano Lett. 22 4800
[13] Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S and Li S C 2022 Nat. Mater. 21 284
[14] Sun Z, Murakami Y, Xuan F, Kaneko T, Golež D and Millis A J 2024 Phys. Rev. Lett. 133 217002
[15] Chen Y J, Cain J D, Stanev T K, Dravid V P and Stern N P 2017 Nat. Photonics 11 431
[16] Galiffi E, et al. 2024 Nature Reviews Materials 9 9
[17] Ginzburg P 2016 Reviews in Physics 1 120
[18] Gilleo M and Geller S 1958 Phys. Rev. 110 73
[19] Cao Y, Yan P, Huebl H, Goennenwein S T and Bauer G E 2015 Phys. Rev. B 91 094423
[20] Yao B, et al. 2019 Commun. Phys. 2 161
[21] Liu C, et al. 2018 Nat. Commun. 9 738
[22] Xu J, Zhong C, Han X, Jin D, Jiang L and Zhang X 2020 Phys. Rev. Lett. 125 237201
[23] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914
[24] Zhu H, Shi H, Tang Z and Tang B 2024 Chin. Phys. B 33 037503
[25] Huebl H, et al. 2013 Phys. Rev. Lett. 111 127003
[26] Zeng Z and Yan P 2025 Phys. Rev. Lett. 134 026701
[27] Cornelissen L, Liu J, Duine R, Youssef J B and Van Wees B 2015 Nat. Phys. 11 1022
[28] Tabuchi Y, et al. 2015 Science 349 405
[29] Xu D, Wang Y P, Li T F and You J Q 2022 Acta Phys. Sin. 71 150302 (in Chinese)
[30] Zhu L T, Zhu X Y, Yue Z C, Tu T and Li C F 2025 Chin. Phys. B 34 030302
[31] Berk C, et al. 2019 Nat. Commun. 10 2652
[32] Liu S, et al. 2021 Phys. Rev. Lett. 127 097401
[33] Zhang X, et al. 2014 Phys. Rev. Lett. 113 156401
[34] Li Y, et al. 2019 Phys. Rev. Lett. 123 107701
[35] Wang X, Qiu Q Y, Huang K W and Xiong H 2023 Phys. Rev. A 108 063715
[36] Wang N, Li S Y, Yu L and Zhu A D 2024 Phys. Rev. B 110 144424
[37] Yu W, Yu T and Bauer G E 2020 Phys. Rev. B 102 064416
[38] Lachance-Quirion D, et al. 2019 Applied Physics Express 12 070101
[39] Soykal O O and Flatté M 2010 Phys. Rev. Lett. 104 077202
[40] Grigoryan V L and Xia K 2019 Phys. Rev. B 100 014415
[41] Yu W, Wang J, Yuan H and Xiao J 2019 Phys. Rev. Lett. 123 227201
[42] Rao J W, et al. 2020 Phys. Rev. B 101 064404
[43] Harder M, Yao B, Gui Y and Hu C M 2021 J. Appl. Phys. 129 201101
[44] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q and Hu C M 2019 Phys. Rev. Lett. 123 127202
[45] Yu T, et al. 2020 Phys. Rev. Lett. 124 107202
[46] Yu W, Yu T and Bauer G E 2020 Phys. Rev. B 102 064416
[47] Zhang X, Bauer G E and Yu T 2020 Phys. Rev. Lett. 125 077203
[48] Rao J, Wang Y P, Chen Z, Yao B, Zhao K and Wei C, Wang C, Li R, Bai L and Lu W 2025 Phys. Rev. Lett. 135 066704
[49] Zhang C, Rao J, Wang C, Chen Z, Zhao K, Yao B, Xu X G and Lu W 2023 Phys. Rev. A 20 024074
[50] Chumak A, Melkov G, Demidov V, Dzyapko O, Safonov V and Demokritov S 2009 Phys. Rev. Lett. 102 187205
[51] Alekseev S, Dizhur S, Polzikova N, Luzanov V, Raevskiy A, Orlov A, Kotov V and Nikitov S 2020 Appl. Phys. Lett. 117 072408
[52] Wang Y P, et al. 2018 Phys. Rev. Lett. 120 057202
[53] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605
[54] Nowik-Boltyk P, Borisenko I, Demidov V and Demokritov S 2019 Ukrainian Journal of Physics 64 938
[55] Hula T, et al. 2022 Appl. Phys. Lett. 121 112404
[56] Zhang X, et al. 2016 Science Advances 2 e1501286
[57] Rao J, Yao B, Wang C, Zhang C, Yu T and Lu W 2023 Phys. Rev. Lett. 130 046705
[58] Lyons T P, et al. 2023 Phys. Rev. Lett. 131 196701
[59] Kurkin M, et al. 2008 Phys. Rev. B 78 134430
[60] Shi J, et al. 2023 Advanced Science 10 2205903
[61] Harder M and Hu C M 2018 Solid State Phys. 69 47
[62] Jäckl M, et al. 2017 Phys. Rev. X 7 021009
[63] Zhou L, et al. 2024 Nat. Commun. 15 7782
[64] Boventer I, et al. 2020 Phys. Rev. Research 2 013154
[65] Boventer I, et al. 2019 New J. Phys. 21 125001
[66] Demokritov S O, et al. 2006 Nature 443 430
[67] Borisenko I, et al. 2020 Nat. Commun. 11 1691
[68] Xu G T, et al. 2023 Phys. Rev. Lett. 131 243601
[69] Shen R C, et al. 2021 Phys. Rev. Lett. 127 183202
[70] Wang C, et al. 2024 Nat. Phys. 20 1139
[71] Lee O, et al. 2023 Phys. Rev. Lett. 130 046703
[72] Zhang Y H 2024 Critical Coupling and Floquet in Cavity Magnonics Master’s thesis University of Manitoba Winnipeg, Manitoba, Canada
[73] Oka T and Kitamura S 2019 Annual Review of Condensed Matter Physics 10 387
[74] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[75] Anisimov P M, Dowling J P and Sanders B C 2011 Phys. Rev. Lett. 107 163604
[76] Wang Y P, et al. 2016 Phys. Rev. B 94 224410
[77] Walker L R 1957 Phys. Rev. 105 390
[78] Yao X, et al. 2023 Phys. Rev. B 108 134427
[79] Abdulrazak T, Liu X, Jin Z, Cao Y and Yan P 2024 Chin. Phys. B 33 087503
[80] Zhang C, et al. 2024 Appl. Phys. Lett. 125 052401
[81] Zhou Z W, et al. 2021 J. Magn. Magn. Mater. 534 168046
[82] Heins C, Kákay A, Kim J V, Hlawacek G, Fassbender J, Schultheiss K and Schultheiss H 2025 arXiv preprint arXiv:2501.05080
[83] Wang Z, Yuan H, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[84] Sun J, Shi S and Wang J 2022 Advanced Engineering Materials 24 2101245
[85] Qiu H, et al. 2023 Advanced Science 10 2300512
[86] Liu Y, et al. 2024 Phys. Rev. B 109 174412
[87] Liang X, Cao Y, Yan P and Zhou Y 2024 Nano Lett. 24 6730
[88] Liu X, et al. 2024 Phys. Rev. B 110 184413
[89] Xiong H 2023 Fundamental Research 3 8
[90] Liu Z X, Peng J and Xiong H 2023 Phys. Rev. A 107 053708
[91] Wang X, Huang K W, Qiu Q Y and Xiong H 2023 Chaos, Solitons & Fractals 176 114137
[92] Liu Z X and Li Y Q 2022 Photonics Research 10 2786
[93] Liu Z X 2024 Appl. Phys. Lett. 124 032403
[94] Dembowski C, et al. 2001 Phys. Rev. Lett. 86 787
[95] Miri M A and Alu A 2019 Science 363 eaar7709
[96] Pishehvar A, et al. 2025 Phys. Rev. A 23 024053
[97] Chen Z, Rao J, Zhao K, Yang F, Wang C, Yao B and Lu W 2024 Appl. Phys. Lett. 125 042403
[98] Zhao K, et al. 2025 AIP Advances 15 015015
[99] Crescini N, et al. 2020 Appl. Phys. Lett. 117 144001
[100] Yao B, et al. 2023 Phys. Rev. Lett. 130 146702
[101] Rao J, et al. 2023 Phys. Rev. Lett. 131 106702
[102] Wang Z Y, et al. 2023 Appl. Phys. Lett. 123 153904
[103] Hou J T, et al. 2024 Appl. Phys. Lett. 124 072401
[104] Yu G, et al. 2017 Nano Lett. 17 261
[105] Peng J, Liu Z X, Yu Y F and Xiong H 2024 Phys. Rev. A 110 053704
[106] Wang M, et al. 2019 IEEE Photonics Journal 11 1
[1] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[2] First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects
Huasu Fu(付华宿), Lichuan Zhang(张礼川), Rami Mrad, Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 067506.
[3] A two-stage injection locking amplifier based on a cavity magnonic oscillator
Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu. Chin. Phys. B, 2025, 34(6): 067104.
[4] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[5] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[6] Magnon-magnon coupling in noncollinear synthetic antiferromagnets
Tengfei Zhang(张腾飞), Quwen Wang(王曲文), Min Chen(陈敏), Jie Dong(董洁), Qian Zhao(赵乾), Zimu Li(李子木), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Jinwu Wei(魏晋武). Chin. Phys. B, 2025, 34(5): 057201.
[7] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[8] Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter
Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵). Chin. Phys. B, 2025, 34(4): 044204.
[9] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[10] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[11] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
[12] Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军). Chin. Phys. B, 2025, 34(10): 107202.
[13] Multipartite entanglement and one-way steering in magnon frequency comb
Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2025, 34(10): 107514.
[14] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[15] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
No Suggested Reading articles found!