Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110308    DOI: 10.1088/1674-1056/addd81
GENERAL Prev   Next  

Measurement-device-independent quantum dialogue protocol with bidirectional identity authentication

Shi-Pu Gu(顾世浦)1,2, Jia-Wei Ying(应佳伟)2, Xing-Fu Wang(王兴福)1, Lan Zhou(周澜)1,†, and Yu-Bo Sheng(盛宇波)2,3
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Quantum dialogue (QD) realizes the real-time secure bidirectional quantum communication. Measurement-deviceindependent (MDI) QD can resist all possible attacks focusing on the imperfect measurement devices and enhance QD’s practical security. However, in practical applications, any secure communication requires identity authentication as a prerequisite. In this paper, we propose an MDI QD protocol with bidirectional identity authentication. The practical communication parties can first authenticate the identity of each other simultaneously before the message exchange. In theory, our MDI QD protocol has unconditional security and the communication parties can exchange 1.5 bits of messages in each communication round with linear optical Bell state measurement. We numerically simulate the secrecy message capacity of our MDI QD protocol. Our protocol has two advantages. First, it can effectively resist the impersonation attack and enhance MDI QD’s practical security. Second, it does not require keys to assist the message exchange and has relatively high efficiency. Our protocol has application potential in the future quantum communication field.
Keywords:  measurement-device-independent quantum dialogue      quantum identity authentication      entanglement swapping  
Received:  25 March 2025      Revised:  19 May 2025      Accepted manuscript online:  28 May 2025
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175106 and 92365110) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23-0987).
Corresponding Authors:  Lan Zhou     E-mail:  zhoul@njupt.edu.cn
About author:  2025-110308-250501.pdf

Cite this article: 

Shi-Pu Gu(顾世浦), Jia-Wei Ying(应佳伟), Xing-Fu Wang(王兴福), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波) Measurement-device-independent quantum dialogue protocol with bidirectional identity authentication 2025 Chin. Phys. B 34 110308

[1] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[2] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[3] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[4] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China Phys. Mech. Astron. 63 230362
[5] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[6] Zhou L and Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311
[7] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Appl. 19 014036
[8] Zeng H, Du M M, Zhong W, Zhou L and Sheng Y B 2024 Funda. Res. 4 851
[9] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[10] Liu C, Zhang C, Gu S P, Wang X F, Zhou L and Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 250311
[11] Ying J W, Zhao P, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L and Sheng Y B 2024 Phys. Rev. Appl. 22 024040
[12] Ying JW,Wang J Y, Xiao Y X, Gu S P,Wang X F, ZhongW, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L and Sheng Y B 2025 Sci. China Phys. Mech. Astron. 68 240312
[13] Ding CW,WangWY, ZhangWD, Zhou L and Sheng Y B 2025 Appl. Phys. Lett. 126 024002
[14] Cao Z W, Zhang Y J, Chai G, Liang Z T, Chen X L, Wang L and Wang Y J 2025 Chin. Phys. B 34 030303
[15] Cao Z W, Wang Y J, Chai G, Chen X L and Lu Y 2025 Chin. Phys. B 34 020308
[16] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[17] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[18] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[19] Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Huang Q, Gao J C, Yin L G and Long G L 2019 2019 Light Sci. Appl. 8 22
[20] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[21] Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L and Lu J H 2022 Light Sci. Appl. 11 83
[22] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183
[23] Pan D, Liu Y C, Niu P H, Zhang H R, Zhang F H, Wang M, Song X T, Chen X W, Zheng C and Long G L 2025 Sci. Adv. 11 eadt4627
[24] Nguyen B A 2004 Phys. Lett. A 328 6
[25] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 22
[26] Yang Y G and Wen Q Y 2007 Sci. China Phys. Mech. Astron. 50 558
[27] Shi G F, Xi X Q and Tian X L 2009 Opt. Commun. 282 2460
[28] Shi G F, Xi X Q and Hu M L 2010 Opt. Commun. 283 1984
[29] Zhou N R, Li J F, Yu Z B, Gong L H and Farouk A 2017 Quant. Inf. Process. 16 4
[30] Zhu P H, Zhong W, Du M M, Li X Y, Zhou L and Sheng Y B 2024 Chin. Phys. B 33 030302
[31] Lin J, Chang C Y, Tsai C W and Yang C W 2024 EPJ Quantum Technol. 11 87
[32] Wang Y Y, Yang T H, Xu J and Chen X G 2024 Quant. Inf. Process. 23 13
[33] Pan T J, Zhou R G and Zhang X X 2024 Quantum Inf. Process. 23 365
[34] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[35] Qi B, Fung C H F, Lo H K and Ma X F 2007 Quantum Inf. Comput. 7 73
[36] Jain N, Wittmann C, Lydersen L, et al. 2011 Phys. Rev. Lett. 107 110501
[37] Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313
[38] Lydersen L,Wiechers C,Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[39] Makarov V 2009 New J. Phys. 11 065003
[40] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[41] Tamaki K and Lo H K 2012 Phys. Rev. A 85 042307
[42] Xu F H, Curty M, Qi B and Lo H K 2013 New J. Phys. 15 113007
[43] Maitra A 2017 Quant. Inf. Process. 16 305
[44] Das N and Paul G 2020 Int. J. Quantum Inf. 18 2050038
[45] Basak J, Maitra A and Maitra S 2021 Quantum Inf. Process. 20 361
[46] Shi G F 2021 Chin. Phys. B 30 100303
[47] Han K Q, Zhou L, Zhong W and Sheng Y B 2021 Quantum Inf. Process. 20 280
[48] Zhang C, Zhou L, Zhong W, Du M M and Sheng Y B 2024 Quantum Inf. Process. 23 52
[49] Mihara T 2002 Phys. Rev. A 65 052326
[50] Zhang X L 2009 Chin. Sci. Bull. 54 2018
[51] Ma H X, Huang P, BaoWS and Zeng G H 2016 Quantum Inf. Process. 15 2605
[52] Dutta A and Pathak A 2022 Quantum Inf. Process. 21 369
[53] Zhou N R, Zeng G H, Zeng W J and Zhu F C 2005 Opt. Commun. 254 380
[54] Zhang Z S, Zeng G H, Zhou N R and Xiong J 2006 Phys. Lett. A 356 199
[55] Ying J W, Zhou L, Zhong W and Sheng Y B 2022 Chin. Phys. B 31 120303
[56] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503
[57] Tang Z Y, Liao Z F, Xu F H, Qi B, Li Q and Lo H K 2014 Phys. Rev. Lett. 112 190503
[58] Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H and Zhang W P 2019 Nat. Commun. 10 148
[59] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346
[60] Ma Y, Ma Y, Ma Y Z, Zhou Z Q, Li C F and Guo G C 2021 Nat. Commun. 12 2381
[61] Zhang X Y, Zhang B, Wei S H, Li H, Liao J Y, Li C, Deng G W, Wang Y, Song H Z and You L X 2023 Sci. Adv. 9 eadf4587
[1] Multi-hop quantum teleportation based on HSES via GHZ-like states
She-Xiang Jiang(蒋社想), Xiao-Long Wei(韦晓龙), Jin-Huan Li(李金欢), and Shuai-Shuai Li(李帅帅). Chin. Phys. B, 2025, 34(1): 010302.
[2] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[3] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[4] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[5] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[6] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[7] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[8] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[9] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先). Chin. Phys. B, 2015, 24(5): 050306.
[10] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[11] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[12] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[13] Arbitrated quantum signature scheme based on entanglement swapping with signer anonymity
Li Wei (李伟), Fan Ming-Yu (范明钰), Wang Guang-Wei (王光卫). Chin. Phys. B, 2012, 21(12): 120305.
[14] Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Zhang Jian-Song(张建松) . Chin. Phys. B, 2011, 20(11): 110304.
[15] Economical multiparty simultaneous quantum identity authentication based on Greenberger--Horne--Zeilinger states
Yang Yu-Guang(杨宇光) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2009, 18(8): 3233-3237.
No Suggested Reading articles found!