Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110309    DOI: 10.1088/1674-1056/ade4b1
GENERAL Prev   Next  

Dynamical evolution of imaginarity resources in non-Markovian environments

Hong-Biao Li(李宏彪)1, Deng-Guo Kong(孔德国)1, Xue-Ping Chai(柴学平)1, Jin-Long Yu(余金龙)1,†, and Qiang Zheng(郑强)2,‡
1 College of Mechanical and Electrical Engineering, Tarim University, Aral 843300, China;
2 School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
Abstract  The pivotal role of complex numbers in quantum mechanics underpins the resource theory of imaginarity. We investigate imaginarity dynamics in a single-qubit open system coupled to a non-Markovian environment. Crucially, cavity field detuning emerges as the dominant regulator, driving continuous conversion between the real and imaginary components of coherence. Nonzero detuning induces characteristic non-periodic oscillations of imaginarity between zero and maximal values, preventing complete decoherence at specific times. We establish that imaginarity resources stem from both intrinsic system evolution and environmental feedback. Significantly, detuning-driven imaginarity generation persists even in Markovian regimes, demonstrating its origin beyond environmental memory effects. These insights offer new perspectives for understanding and harnessing quantum coherence.
Keywords:  open systems      non-Markovian effects      imaginarity resources      coherence resources  
Received:  03 April 2025      Revised:  01 June 2025      Accepted manuscript online:  16 June 2025
PACS:  03.67.-a (Quantum information)  
Fund: This work received the generous support of the Tianchi Talented Young Doctoral Fund Project and Huyang Talent Research Startup Fund Project of Tarim University (Project Number: TDZKSS202511).
Corresponding Authors:  Jin-Long Yu, Qiang Zheng     E-mail:  120220016@taru.edu.cn;qiangzhengtg@tiangong.edu.cn

Cite this article: 

Hong-Biao Li(李宏彪), Deng-Guo Kong(孔德国), Xue-Ping Chai(柴学平), Jin-Long Yu(余金龙), and Qiang Zheng(郑强) Dynamical evolution of imaginarity resources in non-Markovian environments 2025 Chin. Phys. B 34 110309

[1] Haikka P, Goold J, McEndoo S, Plastina F and Maniscalco S 2012 Phys. Rev. A 85 060101
[2] Laine E M, Breuer H P, Piilo J, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 210402
[3] Mazzola L, Rodriguez-Rosario C A, Modi K and Paternostro M 2012 Phys. Rev. A 86 010102
[4] Rodríguez-Rosario C A, Modi K, Mazzola L and Aspuru-Guzik A 2012 Europhys. Lett. 99 20010
[5] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
[6] Apollaro T J, Di Franco C, Plastina F and Paternostro M 2011 Phys. Rev. A 83 032103
[7] Znidarič M, Pineda C and Garcia-Mata I 2011 Phys. Rev. Lett. 107 080404
[8] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[9] Rivas A, Huelga S F and Plenio M B 2014 Reports on Progress in Physics 77 094001
[10] Gorini V, Kossakowski A and Sudarshan E C G 1976 Journal of Mathematical Physics 17 821
[11] Goswami K, Giarmatzi C, Monterola C, Shrapnel S, Romero J and Costa F 2021 Phys. Rev. A 104 022432
[12] Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxford University Press)
[13] Head-Marsden K and Mazziotti D A 2019 Phys. Rev. A 99 022109
[14] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[15] Zeng J, Song Y, Lu J and Zhou L 2023 Chin. Phys. B 32 030305
[16] Nian F Z and Yang Y 2024 Chin. Phys. B 33 058705
[17] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[18] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
[19] Designolle S, Uola R, Luoma K and Brunner N 2021 Phys. Rev. Lett. 126 220404
[20] Ma T, Zhao M J, Zhang H J, Fei S M and Long G L 2017 Phys. Rev. A 95 042328
[21] Kim S, Xiong C, Kumar A, Zhang G and Wu J 2021 Phys. Rev. A 104 012404
[22] Ma Z, Zhang Z, Dai Y, Dong Y and Zhang C 2021 Phys. Rev. A 103 012409
[23] Streltsov A, Adesso G and PlenioMB 2017 Rev. Mod. Phys. 89 041003
[24] Tian P and Sun Y 2025 Phys. Lett. A 544 130479
[25] Xu J 2025 Physica Scripta 100 025106
[26] Zhang L and Li N 2025 Phys. Lett. A 530 130135
[27] Zhang L and Li N 2024 Commun. Theor. Phys. 76 115104
[28] Zhang L and Li N 2024 Europhys. Lett. 148 28002
[29] Hickey A and Gour G 2018 J. Phys. A: Math. Theor. 51 414009
[30] Wu K D, Kondra T V, Rana S, Scandolo C M, Xiang G Y, Li C F, Guo G C and Streltsov A 2021 Phys. Rev. Lett. 126 090401
[31] Wu K D, Kondra T V, Rana S, Scandolo C M, Xiang G Y, Li C F, Guo G C and Streltsov A 2021 Phys. Rev. A 103 032401
[32] Li H b, Hua M, Zheng Q, Zhi Q j and Ping Y 2023 Euro. Phys. J. D 77 38
[33] Chen Q, Gao T and Yan F 2023 Science China Physics, Mechanics & Astronomy 66 280312
[34] Chen M C, Wang C, Liu F M, Wang J W, Ying C, Shang Z X, Wu Y, Gong M, Deng H, Liang F T, et al. 2022 Phys. Rev. Lett. 128 040403
[35] Li Z D, Mao Y L,Weilenmann M, Tavakoli A, Chen H, Feng L, Yang S J, Renou M O, Trillo D, Le T P, et al. 2022 Phys. Rev. Lett. 128 040402
[36] Berry M V 1984 Proc. Math. Phys. Eng. Sci. 392 45
[37] Karmanov V and Carbonell J 2006 Euro. Phys. J. A 27 1
[38] Pagnamenta A and Taylor J 1966 Phys. Rev. Lett. 17 218
[39] Roden J J and Whaley K B 2016 Phys. Rev. E 93 012128
[40] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[41] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[42] Zhang Y, Liu J M and Li Y J 2014 Commun. Theor. Phys. 61 691
[43] Li J F, Liu J M, Feng X L and Oh C 2016 Quantum Inf. Process. 15 2155
[44] Wu K D, Kondra T V, Scandolo C M, Rana S, Xiang G Y, Li C F, Guo G C and Streltsov A 2024 Communications Physics 7 171
[1] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[2] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[3] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[4] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[5] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
No Suggested Reading articles found!