| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Thermal diode with switchable cloaking effect enabled by asymmetric temperature-dependent thermal conductivity |
| Mengzhen Xue(薛梦贞), Jun Wang(王军)†, and Guodong Xia(夏国栋) |
| Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China |
|
|
|
|
Abstract Thermal rectification refers to the asymmetry in heat transfer capability when subjected to forward and reverse temperature gradients. A thermal cloak can render objects invisible in thermal fields by redirecting heat flux pathways. In this paper, we present a thermal diode model based on a bi-layer thermal cloak system that incorporates a composite heat-fluxattracting layer with asymmetric, temperature-dependent thermal conductivity. In the forward case, the heat flux bypasses the cloaking region while maintaining undistorted background isotherm contours, whereas in the reverse case, the thermal cloak fails to function and the device effectively insulates heat. Consequently, thermal rectification occurs in the bi-layer thermal cloak system. A significant increase in the thermal rectification ratio is observed as the temperature gradient increases. By optimizing the system dimensions, a peak rectification ratio of 11.06 is achieved. This study provides physical insight and a design framework for developing novel thermal diodes with dual-functional thermal management capabilities.
|
Received: 13 June 2025
Revised: 16 September 2025
Accepted manuscript online: 10 October 2025
|
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
| |
05.60.-k
|
(Transport processes)
|
| |
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Corresponding Authors:
Jun Wang
E-mail: jwang@bjut.edu.cn
|
Cite this article:
Mengzhen Xue(薛梦贞), Jun Wang(王军), and Guodong Xia(夏国栋) Thermal diode with switchable cloaking effect enabled by asymmetric temperature-dependent thermal conductivity 2025 Chin. Phys. B 34 114403
|
[1] Li N B, Ren J,Wang L, Zhang G, Hänggi P and Li BW2012 Rev. Mod. Phys. 84 1045 [2] Ding Y F, Zhu G M, Shen X Y, Bai X and Li B W 2022 Chin. Phys. B 31 126301 [3] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302 [4] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 [5] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302 [6] Kuo D M T and Chang Y C 2010 Phys. Rev. B 81 205321 [7] Roberts N A and Walker D G 2012 J. Heat Transfer 133 092401 [8] Xie R G, Bui C T, Varghense B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 Adv. Funct. Mater. 21 1602 [9] Li T, Jiang W T, Zhang Y, Li B T, Wang L L, Niu D, Liu H Z, Yin L, Shi Y S, Chen B D, Chen J J, Liu X K and Peng D L 2022 Adv. Funct. Mater. 32 2111229 [10] Joulain K, Derevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 115 200601 [11] Zhang Y C, Yang Z M, Zhang X, Lin B H, Lin G X and Chen J C 2018 Europhys. Lett. 122 17002 [12] Klinar K, Rojo M M, Kutnjak Z and Kitanovski A 2020 J. Appl. Phys. 127 234101 [13] Lyu J, Sheng Z Z, Xu Y Y, Liu C M and Zhang X T 2022 Adv. Funct. Mater. 32 2200137 [14] Chang CW, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121 [15] Yang N, Zhang G and Li B W 2009 Appl. Phys. Lett. 95 033107 [16] Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843 [17] Wang J and Zheng Z G 2010 Phys. Rev. E 81 011114 [18] Shrestha R, Luan Y, Luo X, Shin S, Zhang T, Smith P, Gong W, Bockstaller M, Luo T, Chen R, Hippalgaonkar K and Shen S 2020 Nat. Commun. 11 4346 [19] Li H Y, Wang J and Xia G D 2023 Chin. Phys. B 32 054401 [20] Cao B, Han C Z, Hao X, Wang C and Lu J C 2024 Chin. Phys. Lett. 41 077302 [21] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302 [22] Peyrard M 2006 Europhys. Lett. 76 49 [23] Hu B, He D, Yang L and Zhang Y 2006 Phys. Rev. E 74 060201 [24] Dames C 2009 J. Heat Transfer 131 061301 [25] Go D B and Sen M 2010 J. Heat Transfer 132 124502 [26] Wang J, Shao C R, Li H Y and Xia G D 2022 Int. J. Heat Mass Transfer 188 122627 [27] Du F Y, Zhang W, Wang H Q and Zheng J C 2023 Chin. Phys. B 32 064402 [28] Li Y, Li J X, Qi M H, Qiu C W and Chen H S 2021 Phys. Rev. B 103 014307 [29] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503 [30] Li Y, Shen X Y, Huang J P and Ni Y S 2016 Phys. Lett. A 380 1641 [31] Xue M Z, Wang J and Xia G D 2025 Int. J. Heat Mass Transfer 240 126647 [32] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 [33] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302 [34] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731 [35] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207 [36] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273 [37] Zhang J, Zhang H C, Huang Z L, Sun B W and Li Y Y 2022 Chin. Phys. B 31 014402 [38] Sun T,Wang X H, Yang X Y, Meng T, He R Y andWang Y X 2022 Int. J. Heat Mass Transfer 187 122568 [39] Feng H L, Zhang X W, Zhou L M, Zhang Y K and Ni Y S 2024 Chin. Phys. B 33 038102 [40] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301 [41] Nguyen D M, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901 [42] Han T C, Yang P, Li Y, Lei D Y, Li B W, Hippalgaonkar K and Qiu C W 2018 Adv. Mater. 30 1804019 [43] Su C, Xu L J and Huang J P 2020 Europhys. Lett. 130 34001 [44] Shan Q R, Shao C R, Wang J and Xia G D 2023 Chin. Phys. Lett. 40 104401 [45] Xu L J, Jiang C R, Shang J, Wang R Z and Huang J P 2017 Eur. Phys. J. B 90 221 [46] Uyanna O and Najafi H 2020 Acta Astronaut. 176 341 [47] Yang Y, Chen H Y, Wang H, Li N B and Zhang L F 2018 Phys. Rev. E 98 042131 [48] Herrera F A, Luo T F and Go D B 2018 J. Heat Transfer 139 091301 [49] Oh D W, Ko C, Ramanathan S and Cahill D G 2010 Appl. Phys. Lett. 96 151906 [50] Liu L N, Hou Y, Yin X Z, Zhang F and Peng Z F 2018 Funct. Mater. Lett. 12 1950015 [51] Zhang T and Lou T F 2013 ACS Nano 7 7592 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|