|
|
Electronic transport properties of Co cluster-decorated graphene |
Chao-Yi Cai(蔡超逸)1, Jian-Hao Chen(陈剑豪)1,2 |
1 International Center for Quantum Materials, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Interactions of magnetic elements with graphene may lead to various electronic states that have potential applications. We report an in-situ experiment in which the quantum transport properties of graphene are measured with increasing cobalt coverage in continuous ultra-high vacuum environment. The results show that e-beam deposited cobalt forms clusters on the surface of graphene, even at low sample temperatures. Scattering of charge carriers by the absorbed cobalt clusters results in the disappearance of the Shubnikov-de Haas (SdH) oscillations and the appearance of negative magnetoresistance (MR) which shows no sign of saturation up to an applied magnetic field of 9 T. We propose that these observations could originate from quantum interference driven by cobalt disorder and can be explained by the weak localization theory.
|
Received: 02 May 2018
Revised: 07 May 2018
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.20.Fz
|
(Weak or Anderson localization)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos.2013CB921900 and 2014CB920900),the National Natural Science Foundation of China (Grant No.11374021),and the National Key Research and Development Program of China (Grant No.2018YFA0305604). |
Corresponding Authors:
Jian-Hao Chen
E-mail: chenjianhao@pku.edu.cn
|
Cite this article:
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪) Electronic transport properties of Co cluster-decorated graphene 2018 Chin. Phys. B 27 067304
|
[1] |
Huang B, Clark G, Navarromoratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270
|
[2] |
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C and Wang Y 2017 Nature 546 265
|
[3] |
Zhang M, Wang H, Mu K, Wang P, Niu W, Zhang S, Xiao G, Chen Y, Tong T and Fu D 2018 Acs Nano 12
|
[4] |
Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami M 2008 Nat. Phys. 4 377
|
[5] |
Xiao S, Chen J H, Adam S, Williams E D and Fuhrer M S 2010 Phys. Rev. B 82 1558
|
[6] |
Mccreary K M, Swartz A G, HanW, Fabian J and Kawakami R K 2012 Phys. Rev. Lett. 109 186604
|
[7] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[8] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[9] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
|
[10] |
Qin Y, Wang S, Wang R, Bu H, Wang X, Wang X, Song F, Wang B and Wang G 2016 Appl. Phys. Lett. 108 021001
|
[11] |
Katoch J, Chen J H, Tsuchikawa R, Smith C W, Mucciolo E R and Ishigami M 2010 Phys. Rev. B 82
|
[12] |
Qin Y, Han J, Guo G, Du Y, Li Z, Song Y, Pi L, Wang X, Wan X and Han M 2015 Appl. Phys. Lett. 106 666
|
[13] |
Yazyev O V and Helm L 2007 Phys. Rev. B 75
|
[14] |
Yazyev O V 2008 Phys. Rev. Lett. 101 037203
|
[15] |
Hong X, Cheng S H, Herding C and Zhu J 2011 Phys. Rev. B 83 085410
|
[16] |
Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K and Grigorieva I V 2012 Nat. Phys. 8 199
|
[17] |
Brihuega I 2016 Science 352 437
|
[18] |
Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603
|
[19] |
Wang Z, Ki D K, Chen H, Berger H, Macdonald A H and Morpurgo A F 2015 Nat. Commun. 6
|
[20] |
Shi H S and Vahram Grigoryan 2015 Chin. Phys. B 24 514
|
[21] |
Santos E J, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433
|
[22] |
Ren J, Guo H, Pan J, Zhang Y Y, Wu X, Luo H G, Du S, Pantelides S T and Gao H J 2014 Nano Lett. 14 4011
|
[23] |
Donati F, Dubout Q, Auté G, Patthey F, Calleja F, Gambardella P, Yazyev O and Brune H 2013 Phys. Rev. Lett. 111 236801
|
[24] |
Decker R, Brede J, Atodiresei N, Caciuc V, Blügel S and Wiesendanger R 2013 Phys. Rev. B 87 041403
|
[25] |
Jia Z, Yan B, Niu J, Han Q, Zhu R, Yu D and Wu X 2015 Phys. Rev. B 91 085411
|
[26] |
Mccreary K M, Pi K, Swartz A, Han W, Bao W, Lau C N, Guinea F, Katsnelson M I and Kawakami R K 2010 Phys. Rev. B 81 760
|
[27] |
Novikov D S 2007 Appl. Phys. Lett. 91 666
|
[28] |
Adam S 2007 Proc. Natl. Acad. Sci. USA 104 18392
|
[29] |
Pi K, Mccreary K M, Bao W, Han W, Chiang Y F, Li Y, Tsai S W, Lau C N and Kawakami R K 2009 Phys. Rev. B 80
|
[30] |
Elias D C, Nair R R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, KatsnelsonM and Geim A 2009 Science 323 610
|
[31] |
Góez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M and Kern K 2007 Nano Lett. 7 3499
|
[32] |
Kaiser A B, Gómez-Navarro C, Sundaram R S, Burghard M and Kern K 2009 Nano Lett. 9 1787
|
[33] |
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Klitzing K V and Yacoby A 2012 Nat. Phys. 4 144
|
[34] |
Gu H, Guo J, Sadu R and Huang Y 2013 Appl. Phys. Lett. 102 212403
|
[35] |
Su T I, Wang C R, Lin S T and Rosenbaum R 2002 Phys. Rev. B 66 340
|
[36] |
Shlimak I, Zion E, Butenko A V, Wolfson L, Richter V, Kaganovskii Y, Sharoni A, Haran A, Naveh D and Kogan E 2015 Physica E 76
|
[37] |
Brinkman A, Huijben M, Zalk M V, Huijben J, Zeitler U, Maan J C, Wiel W G V D, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[38] |
Cochrane R W, Harris R, Strömolson J O and Zuckermann M J 1975 Phys. Rev. Lett. 35 676
|
[39] |
Aleiner I L and Efetov K B 2006 Phys. Rev. Lett. 97 236801
|
[40] |
Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
|
[41] |
McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T and Altshuler B 2006 Phys. Rev. Lett. 97 146805
|
[42] |
Gorbachev R V, Tikhonenko F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
|
[43] |
Tikhonenko F, Horsell D, Gorbachev R and Savchenko A 2008 Phys. Rev. Lett. 100 056802
|
[44] |
Moser J, Tao H, Roche S, Alsina F, Torres C M S and Bachtold A 2010 Phys. Rev. B 81 205445
|
[45] |
Bergmann G 1984 Phys. Rep. 107 1
|
[46] |
Faran O and Ovadyahu Z 1988 Phys. Rev. B 38 5457
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|