1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China; 2 State Key Laboratory of Ultra-intense Laser Science and Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity, various nonlinear diffraction phenomena occur, with nonlinear Raman-Nath diffraction (NRND) being a prominent example. In this study, we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate (PPLN) crystal thin-plate nonlinear grating. By rotating the crystal, we change the incidence angle and observe and measure the exit angle, polarization, and power of NRND spots on the other side of the crystal. The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam, which are consistent with the theoretical prediction. We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations.
Fund: Project supported by the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), the National Natural Science Foundation of China (Grant No. 12434016), and the National Funded Postdoctoral Researcher Program (Grant No. GZB20240785).
Corresponding Authors:
Lihong Hong
E-mail: honglihong@siom.ac.cn
Cite this article:
Jiacheng Li(李嘉诚), Lihong Hong(洪丽红), Yu Zou(邹娱), Jianluo Chen(陈健洛), and Zhi-Yuan Li(李志远) Nonlinear Raman-Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating 2025 Chin. Phys. B 34 054205
[1] Hong L H, Zou Y, Li J C, Chen J L and Li Z Y 2024 J. Opt. Soc. Am. B 41 2562 [2] Sheng Y, Kong Q, Wang W J, Kalinowski K and Krolikowski W 2012 J. Phys. B: At. Mol. Opt. Phys. 45 055401 [3] Chen Y P, Dang W R, Zheng Y L, Chen X F and Deng X W 2013 Opt. Lett. 38 2298 [4] Chen Y S, Liu Y X, Zhao R W, Xu T X, Sheng Y and Xu T F 2022 Crystal Research and Technology 57 2100193 [5] Vyunishev A M, Slabko V V, Baturin I S, Akhmatkhanov A R and Shur V Y 2014 Opt. Lett. 39 4231 [6] Vyunishev A M, Arkhipkin V G, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Y and Chirkin A S 2015 Opt. Lett. 40 4002 [7] Hong L H, Chen B Q, Hu C Y and Li Z Y 2022 Photonics Research 10 905 [8] Liu H G, Li J, Zhao X H, Zheng Y L, and Chen X F 2017 Conference on Lasers and Electro-Optics (CLEO), May 14-19, 2017, San Jose, CA, USA, p. 1 [9] Zhou H Q, Liu H G, Sang M H, Li J and Chen X F 2017 Opt. Express 25 3774 [10] WangWJ, Sheng Y, Roppo V, Chen Z H, Niu X Y and KrolikowskiW 2013 Opt. Express 21 18671 [11] Vyunishev A M, Arkhipkin V G and Chirkin A S 2015 J. Opt. Soc. Am. B 32 2411 [12] Karpinski P, Chen X, Shvedov V, Hnatovsky C, Grisard A, Lallier E, Davies B L, Krolikowski W and Sheng Y 2015 Opt. Express 23 14903 [13] Chen C D, Feng C and Hu X P 2019 J. Opt. 21 035501 [14] Sheng Y, Wang W J, Shiloh R, Roppo V, Arie A and Krolikowski W 2011 Opt. Lett. 36 3266 [15] Kalinowski K, Roppo V, Lukasiewicz T, Swirkowicz M, Sheng Y and Krolikowski W 2012 Appl. Phys. B 109 557 [16] Shui T, Yang W X and Li L 2019 Opt. Express 27 24693 [17] Smirnov V A and Vostrikova L I 2016 13th International Scientific- Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), October 3-6, 2016, Novosibirsk, Russia, p. 379 [18] Hong L H, Zou Y, Ji Z T and Li Z Y 2024 Phys. Rev. Lett. 133 223801 [19] Aleksandrovsky A S, Vyunishev A M, Slabko V V, Zaitsev A I and Zamkov A V 2009 Opt. Commun. 282 2263 [20] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q and Li Z Y 2014 Light Sci. Appl. 3 e189 [21] Chen B Q, Zhang C, Hu C Y, Liu R J and Li Z Y 2015 Phys. Rev. Lett. 115 083902 [22] Ren M L, Ma D L and Li Z Y 2011 Opt. Lett. 36 3696 [23] Saltiel S M, Neshev D N, Krolikowski W, Arie A, and Kivshar Y S 2009 11th International Conference on Transparent Optical Networks, 28 June-2 July, 2009, Ponta Delgada, Portugal, p. 1 [24] Trull J, Cojocaru C, Fischer R, Saltiel S M, Staliunas K, Herrero R, Vilaseca R, Neshev D N, Krolikowski W and Kivshar Y S 2007 Opt. Express 15 15868 [25] Wang W J, Sheng Y, Kong Y F, Arie A and Krolikowski W 2010 Opt. Lett. 35 3790 [26] Hong L H, Chen B Q, Hu C Y, He P and Li Z Y 2022 Phys. Rev. Appl. 18 044063
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.