Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087901    DOI: 10.1088/1674-1056/ad4cd6
RAPID COMMUNICATION Prev   Next  

Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si

Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏)†
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors. Nevertheless, in this study, we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime, polarization-dependent deep-subwavelength single grooves with linewidths of $\sim 180 $ nm can be controllably prepared on Si. Generally, the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed, whereas the single-groove depth significantly increases from $\sim 300$ nm to $\sim 600$ nm with decrease in the scanning speed, or even to over 1 μm with multi-processing, indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves. Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast, non-thermal ablation process, and the oxidized deposits near the grooves are easy to clean up. Furthermore, the results, showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves, indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation.
Keywords:  femtosecond-laser direct writing of Si      deep-subwavelength single grooves      polarization dependence      high numerical aperture      ultrafast non-thermal ablation  
Received:  07 March 2024      Revised:  16 May 2024      Accepted manuscript online: 
PACS:  79.20.Eb (Laser ablation)  
  42.62.-b (Laser applications)  
  52.38.Mf (Laser ablation)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515012335), the National Natural Science Foundation of China (Grant No. 11274400), Pearl River S&T Nova Program of Guangzhou (Grant No. 201506010059), State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics), and State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University).
Corresponding Authors:  Min Huang     E-mail:  syshm@163.com

Cite this article: 

Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏) Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si 2024 Chin. Phys. B 33 087901

[1] Cheng J, Liu C S, Shang S, Liu D, Perrie W, Dearden G and Watkins K 2013 Opt. Laser Technol. 46 88
[2] Chichkov B N, Momma C, Nolte S, von Alvensleben F and Tünnermann A 1996 Appl. Phys. A 63 109
[3] Momma C, Chichkov B N, Nolte S, von Alvensleben F, Tünnermann A, Welling H and Wellegehausen B 1996 Opt. Commun. 129 134
[4] Hashida M, Mishima H, Tokita S and Sakabe S 2009 Opt. Express 17 13116
[5] Liu Y, Ding Y, Xie J C, Xu L L, Wha Jeong I and Yang L J 2023 Mater. Design 225 111443
[6] Birnbaum M 1965 J. Appl. Phys. 36 3688
[7] Huang M and Xu Z Z 2014 Laser Photonics Rev. 8 633
[8] Zhang H, Colombier J P and Witte S 2020 Phys. Rev. B 101 245430
[9] Skolski J Z P, Römer G R B E, Obona J V, Ocelik V, Huis in ’t Veld A J and De Hosson J T M 2012 Phys. Rev. B 85 075320
[10] Bonse J and Gräf S 2020 Laser Photonics Rev. 14 2000215
[11] Huang M, Zhao F L, Cheng Y, Xu N S and Xu Z Z 2009 ACS Nano 3 4062
[12] Huang M, Cheng Y, Zhao F L and Xu Z Z 2013 Ann. Phys. (Berl.) 525 74
[13] Shimotsuma Y, Kazansky P G, Qiu J R and Hirao K 2003 Phys. Rev. Lett. 91 247405
[14] Sun X C, Liu X Q, Sun Z J, Li S X, Zheng J X, Xia H and Wang L 2022 Opt. Express 30 32244
[15] Dusser B, Sagan Z, Soder H, Faure N, Colombier J P, Jourlin M and Audouard 2010 Opt. Express 18 2913
[16] Taylor R, Hnatovsky C and Simova E 2008 Laser Photonics Rev. 2 26
[17] Vorobyev A Y, Makin V S and Guo C 2009 Phys. Rev. Lett. 102 234301
[18] Barberoglou M, Stratakis E, Zorba V, Spanakis E, Tzanetakis P, Anastasiadis S H and Fotakis C 2009 CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, June 14-19, 2009, Munich, Germany, pp. 1-1
[19] Lopez-Santos C, Puerto D, Siegel J, Macias-Montero M, Florian C, Gil-Rostra J, Lopez-Flores V, Borras A, Gonzalez-Elipe A R and Solis J 2021 Adv. Opt. Mater. 9 2001086
[20] Killaire G, Walia J, Rashid S, Berini P and Weck A 2022 Appl. Surf. Sci. 583 152440
[21] Li R H, Zhou S N, Liu S T, Zhou Y H, Jiang S J and Huang M 2022 Appl. Phys. A 128 1060
[22] Zhou S N, Li R H, Jiang S J and Huang M 2022 Opt. Laser Technol. 153 108261
[23] Geng J, Yan W, Shi L P and Qiu M 2022 Light Sci. Appl. 11 189
[24] Singh P C and Das S K 2021 Pramana 95 11
[25] Huang J X, Xu K, Xu S L, Li X W 2022 Laser Photonics Rev. 16 2200093
[26] Sarracino A, Ansari A W, Torralva B R and Yalisove S 2021 Appl. Phys. Lett. 118 242106
[27] Liao Y, Cheng Y, Liu C N, Song J X, He F, Shen Y L, Chen D P, Xu Z Z, Fan Z C, Wei X B, Sugioka K and Midorikawa K 2013 Lab Chip 13 1626
[28] Li Z Z, Wang L, Fan H, Yu Y H, Chen Q D, Juodkazis S and Sun H B 2020 Light Sci. Appl. 9 41
[29] Yan Z, Gao J C, Beresna M and Zhang J Y 2022 Adv. Opt. Mater. 10 2101676
[30] Tsibidis G D, Barberoglou M, Loukakos P A, Stratakis E and Fotakis C 2012 Phys. Rev. B 86 115316
[31] Kelly R and Miotello A 1996 Appl. Surf. Sci. 96 205
[32] Huang M, Zhao F L, Cheng Y, Xu N and Xu Z Z 2009 Phys. Rev. B 79 125436
[33] Lin Z Y, Liu H G, Ji L F, Lin W X and Hong M H 2020 Nano Lett. 20 4947
[34] Lin Z, Ji L and Hong M 2022 Nano Lett. 22 7005
[1] Experimental research on the longitudinal field generated by a tightly focused beam
Zhang Ming-Qian (张明倩), Wang Jia (王佳), Tian Qian (田芊). Chin. Phys. B, 2013, 22(4): 044202.
[2] Tight focusing of partially polarized vortex beams by binary phase Fresnel zone plates
Shu Jian-Hua(舒建华), Chen Zi-Yang(陈子阳),Pu Ji-Xiong(蒲继雄), and Liu Yong-Xin(刘永欣) . Chin. Phys. B, 2011, 20(11): 114202.
[3] Focusing of elliptically polarized Gaussian beams through an annular high numerical aperture
Chen Bao-Suan(陈宝算) and Pu Ji-Xiong(蒲继雄). Chin. Phys. B, 2010, 19(7): 074202.
[4] Two-photon absorption coefficient dichroism in II--VI semiconductor crystals
Ma Hong(马红), Ma Guo-Hong(马国宏), Ma Hong-Liang(马洪良), and Tang Sing-Hai(唐星海). Chin. Phys. B, 2007, 16(12): 3873-3878.
[5] A study on the short-wavelength and high-numerical-aperture phase-change recording
Liu Bo (刘 波), Ruan Hao (阮 昊), Gan Fu-Xi (干福熹). Chin. Phys. B, 2003, 12(1): 107-111.
No Suggested Reading articles found!