Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064213    DOI: 10.1088/1674-1056/23/6/064213

Rectification effect in asymmetric Kerr nonlinear medium

Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟)
Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Abstract  Based on the transfer matrix method, the recursion of an electromagnetic wave propagating in an asymmetric Kerr nonlinear medium is analytically formulated, from which the rectification effect is clearly presented. The effects on the rectification region of the linear part and nonlinear coefficient of permittivity are both studied, and the energy densities before and after rectification are discussed. We use a rectifying factor to describe the intensity of the rectification effect. The result shows that every transmission peak is divided into two parts when the symmetry is broken, and nonlinear asymmetry has a more significant effect on the rectification effect than the linear asymmetry. The rectification intensity and area will be enlarged when the asymmetry factor is increased in a certain range.
Keywords:  rectification      transfer matrix method      Kerr nonlinearity      asymmetry  
Received:  24 September 2014      Revised:  14 November 2013      Accepted manuscript online: 
PACS:  42.70.Mp (Nonlinear optical crystals)  
  42.79.-e (Optical elements, devices, and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51032002) and the National High Technology Research and Development Program of China (Grant No. 2011AA050526).
Corresponding Authors:  Pan Feng-Ming     E-mail:

Cite this article: 

Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟) Rectification effect in asymmetric Kerr nonlinear medium 2014 Chin. Phys. B 23 064213

[1] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[2] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM).
[3] Zhang Q Y and Tian Q 2002 Chin. Phys. 11 809
[4] Tian Q and Wang J P 2002 Int. J. Theor. Phys. 41 1275
[5] Liu N H and Fu J W 2003 Acta Phys. Sin. 52 1418 (in Chinese)
[6] Liu B C, Pan X Q and Ren Z M 2006 Acta Phys. Sin. 55 6595 (in Chinese)
[7] Li S M, Wang Q, Wu Z and Wei Q 2001 Acta Phys. Sin. 50 489 (in Chinese)
[8] Xiong H, Si L G, Ding C L, Yang X X and Wu Y 2012 Phys. Rev. E 85 016606
[9] Petrov E Y and Kudrin A V 2010 Phys. Rev. Lett. 104 190404
[10] Suchowski H, Oron D, Arie A and Silberberg Y 2008 Phys. Rev. A 78 063821
[11] Fu L, Ma G and Yan E C Y 2010 J. Am. Chem. Soc. 132 5405
[12] Ji N, Ostroverkhov V, Tian C S and Shen Y R 2008 Phys. Rev. Lett. 100 096102
[13] He S and Maynard J D 1986 Phys. Rev. Lett. 57 3171
[14] Bayer G and Niederdränk T 1993 Phys. Rev. Lett. 70 3884
[15] Hou Z L and Fu X J 2004 Phys. Rev. B 70 014304
[16] Cao Y J and Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese)
[17] Cao Y J, Yang X and Jiang Z L 2009 Acta Phys. Sin. 58 7735 (in Chinese)
[18] Zhukovsky S V and Smirnov A G 2011 Phys. Rev. A 83 023818
[19] Konotop V V and Kuzmiak V 2002 Phys. Rev. B 66 235208
[20] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[21] Siddiki A, Horas J, Kupidura D, Wegscheider W and Ludwig S 2010 New J. Phys. 12 113011
[22] Eilbeck J, Lomdahl P and Scott A 1985 Physica 16D 318
[23] Kevrekidis P G 2009 The Discrete Nonlinear Schrödinger Equation (Berlin: Springer Verlag).
[24] Kosevich A M and Mamalui M A 2002 J. Exp. Theor. Phys. 95 777
[25] Wang H and Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[3] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[4] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[5] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[6] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[9] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[10] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[11] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[12] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[13] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[14] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[15] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
No Suggested Reading articles found!