Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020306    DOI: 10.1088/1674-1056/25/2/020306
GENERAL Prev   Next  

Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement

Jino Heo1,2, Chang-Ho Hong1,2, Dong-Hoon Lee1,2, Hyung-Jin Yang1,3
1. Graduate School of Information Security (GSIS), Korea University, Anam 5-ga Sungbuk-gu, Seoul, Republic of Korea;
2. Center for Information Security Technologies (CIST), Korea University, Seoul, Republic of Korea;
3. Department of Physics, Korea University, Sejong, 339-700, Republic of Korea
Abstract  We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
Keywords:  cross-Kerr nonlinearity      quantum non-demolition photon-number-resolving measurement      bidirectional transfer of quantum information  
Received:  31 July 2015      Revised:  16 October 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.-k (Nonlinear optics)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Hyung-Jin Yang     E-mail:  yangh@korea.ac.kr

Cite this article: 

Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement 2016 Chin. Phys. B 25 020306

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Hong C H, Heo J, Khym G L, Lim J I, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
[4] Zhang C M, Li M, Huang J Z, Treeviriyanupab P, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Sripimanwat K and Han Z F 2014 Chin. Sci. Bull. 59 2825
[5] Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
[6] Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
[7] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[8] Heo J, Hong C H, Lim J I and Yang H J 2013 Chin. Phys. Lett. 30 040301
[9] Bostrom K and Felbinger F 2002 Phys. Rev. Lett. 89 187902
[10] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[11] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin Phys. B 23 090309
[12] Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
[13] Hong C H, Heo J, Lim J I and Yang H J 2010 Chin. Phys. Lett. 29 050303
[14] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[15] Zhao Z, Zhang A N, Chen Y A, Zhang H, Du J F, Yang T and Pan J W 2005 Phys. Rev. Lett. 94 030501
[16] Langford N K, Weinhold T J, Prevedel R, Resch K J, Gilchrist A, O'Brien J L, Pryde G J and White A G 2005 Phys. Rev. Lett. 95 210504
[17] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[18] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[19] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[20] Zhao R T, Guo Q, Cheng L Y, Sun L L, Wang H F and Zhang S 2013 Chin. Phys. B 22 030313
[21] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[22] Kang Y H, Xia Y and Lu P M 2014 Int. J. Theor. Phys. 53 17
[23] Heo J, Hong C H, Lim J I and Yang H J 2015 Chin. Phys. B 24 050304
[24] Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
[25] Zheng C H, Zhao J, Shi P, Li W D and Gu Y J 2014 Opt. Commun. 316 26
[26] Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
[27] Heo J, Hong C H, Lim J I and Yang H J 2015 Int. J. Theor. Phys. 54 2261
[28] Munro W J, Nemoto K and Spiller T P 2005 New J. Phys. 7 137
[29] Jeong H 2005 Phys. Rev. A 72 034305
[30] Jeong H 2006 Phys. Rev. A 73 052320
[31] Barrett S D and Milburn G J 2006 Phys. Rev. A 74 060302
[32] Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338
[33] He B, Ren Y and Bergou J A 2009 Phys. Rev. A 79 052323
[34] Lin Q and He B 2009 Phys. Rev. A 80 042310
[35] Lin Q, He B, Bergou J A and Ren Y 2009 Phys. Rev. A 80 042311
[36] Su S L, Zhu L, Guo Q, Wang H F, Zhu A D, Zhang S and Yeon K H 2012 Opt. Commun. 285 4134
[37] Zhu M Z and Ye L 2014 J. Opt. Soc. Am. B 31 405
[38] Zhu M Z and Ye L 2015 Opt. Commun. 334 51
[39] Dong L, Xiu X M, Gao Y J and Yi X X 2013 Quantum. Inform. Process. 12 1787
[40] Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
[41] Han X, Hu S, Guo Q, Wang H F, Zhang S 2015 Quantum. Inform. Process. 14 1919
[42] Zhou J, Yang M, Lu Y and Cao Z L 2009 Chin. Phys. Lett. 26 100301
[43] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[44] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[45] Sheng Y B and Zhou L 2015 Sci. Rep. 15 13453
[46] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[47] Liu H J, Fan L L, Xia Y and Song J 2015 Quantum. Inform. Process. 14 2909
[48] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[49] Sheng Y B and Zhou L 2015 Sci. Rep. 15 7815
[50] Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford university press)
[51] Kok P and Braunstein S L 2000 Phys. Rev. A 61 042304
[52] Kok P, Munro W J, Nemoto K, Ralph T C, Dowing J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[53] Lukin M D and Lu A I 2000 Phys. Rev. Lett. 84 1419
[54] Lukin M D and Lu A I 2001 Nature 413 273
[55] Kok P 2008 Phys. Rev. A 77 013808
[56] Kippenberg T, Spillane S and Vahala K 2004 Phys. Rev. Lett. 93 083904
[57] Wang X W, Tang S Q and Zhang D Y 2013 Opt. Commun. 296 153
[58] Li X, Voss P, Sharping J and Kumar P 2005 Phys. Rev. Lett. 94 053601
[59] Grangier P, Levenson J A and Poizat J P 1998 Nature 396 537
[60] Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 218
[61] He B, MacRae A, Han Y, Lvovsky A and Simon C 2011 Phys. Rev. A 83 022312
[62] Shahmoon E, Kurizki G, Fleischhauer M and Petrosyn 2011 Phys. Rev. A 83 033806
[63] Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett. 97 063901
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[3] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[4] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[5] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[6] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[7] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[8] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[9] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[10] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[11] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
No Suggested Reading articles found!