|
|
Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement |
Jino Heo1,2, Chang-Ho Hong1,2, Dong-Hoon Lee1,2, Hyung-Jin Yang1,3 |
1. Graduate School of Information Security (GSIS), Korea University, Anam 5-ga Sungbuk-gu, Seoul, Republic of Korea; 2. Center for Information Security Technologies (CIST), Korea University, Seoul, Republic of Korea; 3. Department of Physics, Korea University, Sejong, 339-700, Republic of Korea |
|
|
Abstract We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
|
Received: 31 July 2015
Revised: 16 October 2015
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Corresponding Authors:
Hyung-Jin Yang
E-mail: yangh@korea.ac.kr
|
Cite this article:
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement 2016 Chin. Phys. B 25 020306
|
[1] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[2] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[3] |
Hong C H, Heo J, Khym G L, Lim J I, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
|
[4] |
Zhang C M, Li M, Huang J Z, Treeviriyanupab P, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Sripimanwat K and Han Z F 2014 Chin. Sci. Bull. 59 2825
|
[5] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F 2014 Chin. Phys. B 23 100304
|
[6] |
Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F 2014 Chin. Phys. Lett. 31 070302
|
[7] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[8] |
Heo J, Hong C H, Lim J I and Yang H J 2013 Chin. Phys. Lett. 30 040301
|
[9] |
Bostrom K and Felbinger F 2002 Phys. Rev. Lett. 89 187902
|
[10] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[11] |
Hong C H, Heo J, Lim J I and Yang H J 2014 Chin Phys. B 23 090309
|
[12] |
Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
|
[13] |
Hong C H, Heo J, Lim J I and Yang H J 2010 Chin. Phys. Lett. 29 050303
|
[14] |
Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
|
[15] |
Zhao Z, Zhang A N, Chen Y A, Zhang H, Du J F, Yang T and Pan J W 2005 Phys. Rev. Lett. 94 030501
|
[16] |
Langford N K, Weinhold T J, Prevedel R, Resch K J, Gilchrist A, O'Brien J L, Pryde G J and White A G 2005 Phys. Rev. Lett. 95 210504
|
[17] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[18] |
Lin Q and Li J 2009 Phys. Rev. A 79 022301
|
[19] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[20] |
Zhao R T, Guo Q, Cheng L Y, Sun L L, Wang H F and Zhang S 2013 Chin. Phys. B 22 030313
|
[21] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[22] |
Kang Y H, Xia Y and Lu P M 2014 Int. J. Theor. Phys. 53 17
|
[23] |
Heo J, Hong C H, Lim J I and Yang H J 2015 Chin. Phys. B 24 050304
|
[24] |
Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
|
[25] |
Zheng C H, Zhao J, Shi P, Li W D and Gu Y J 2014 Opt. Commun. 316 26
|
[26] |
Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
|
[27] |
Heo J, Hong C H, Lim J I and Yang H J 2015 Int. J. Theor. Phys. 54 2261
|
[28] |
Munro W J, Nemoto K and Spiller T P 2005 New J. Phys. 7 137
|
[29] |
Jeong H 2005 Phys. Rev. A 72 034305
|
[30] |
Jeong H 2006 Phys. Rev. A 73 052320
|
[31] |
Barrett S D and Milburn G J 2006 Phys. Rev. A 74 060302
|
[32] |
Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338
|
[33] |
He B, Ren Y and Bergou J A 2009 Phys. Rev. A 79 052323
|
[34] |
Lin Q and He B 2009 Phys. Rev. A 80 042310
|
[35] |
Lin Q, He B, Bergou J A and Ren Y 2009 Phys. Rev. A 80 042311
|
[36] |
Su S L, Zhu L, Guo Q, Wang H F, Zhu A D, Zhang S and Yeon K H 2012 Opt. Commun. 285 4134
|
[37] |
Zhu M Z and Ye L 2014 J. Opt. Soc. Am. B 31 405
|
[38] |
Zhu M Z and Ye L 2015 Opt. Commun. 334 51
|
[39] |
Dong L, Xiu X M, Gao Y J and Yi X X 2013 Quantum. Inform. Process. 12 1787
|
[40] |
Yan X, Yu Y F and Zhang Z M 2014 Chin. Phys. B 23 060306
|
[41] |
Han X, Hu S, Guo Q, Wang H F, Zhang S 2015 Quantum. Inform. Process. 14 1919
|
[42] |
Zhou J, Yang M, Lu Y and Cao Z L 2009 Chin. Phys. Lett. 26 100301
|
[43] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[44] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[45] |
Sheng Y B and Zhou L 2015 Sci. Rep. 15 13453
|
[46] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[47] |
Liu H J, Fan L L, Xia Y and Song J 2015 Quantum. Inform. Process. 14 2909
|
[48] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[49] |
Sheng Y B and Zhou L 2015 Sci. Rep. 15 7815
|
[50] |
Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford university press)
|
[51] |
Kok P and Braunstein S L 2000 Phys. Rev. A 61 042304
|
[52] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowing J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[53] |
Lukin M D and Lu A I 2000 Phys. Rev. Lett. 84 1419
|
[54] |
Lukin M D and Lu A I 2001 Nature 413 273
|
[55] |
Kok P 2008 Phys. Rev. A 77 013808
|
[56] |
Kippenberg T, Spillane S and Vahala K 2004 Phys. Rev. Lett. 93 083904
|
[57] |
Wang X W, Tang S Q and Zhang D Y 2013 Opt. Commun. 296 153
|
[58] |
Li X, Voss P, Sharping J and Kumar P 2005 Phys. Rev. Lett. 94 053601
|
[59] |
Grangier P, Levenson J A and Poizat J P 1998 Nature 396 537
|
[60] |
Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 218
|
[61] |
He B, MacRae A, Han Y, Lvovsky A and Simon C 2011 Phys. Rev. A 83 022312
|
[62] |
Shahmoon E, Kurizki G, Fleischhauer M and Petrosyn 2011 Phys. Rev. A 83 033806
|
[63] |
Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett. 97 063901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|