Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060301    DOI: 10.1088/1674-1056/adc36b
GENERAL Prev   Next  

Ground state of SU(3) spin-orbit coupled soft-core Bose gas

Jia Liu(刘佳)1, Jing Feng(冯婧)1, Ya-Jun Wang(王雅君)2, Xiao-Fei Zhang(张晓斐)1, and Xue-Ying Yang(杨雪滢)3,†
1 School of Physics and Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China;
2 Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China;
3 Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
Abstract  By numerical propagation of the coupled Gross-Pitaevskii equations, the ground state phase of a SU(3) spin-orbit coupled Bose gas with nonlocal soft-core interactions has been investigated within the all parameter space, showing strong dependence on the strength of SU(3) spin-orbit coupling, nonlocal soft-core interactions, spin-exchange interactions and Rydberg blockade radius. More specially, we also perform a detailed study of the dependence of soft-core interaction on the Rydberg blockade radius at the point of rotational symmetry breaking. Our results show that under the combined effects of such parameters, the ground state shows a threefold-degenerate magnetized state for ferromagnetic spin interaction, while a variety of lattice phases for antiferromagnetic spin interaction.
Keywords:  Bose-Einstein condensate      soft-core interaction      spin-orbit coupling  
Received:  18 February 2025      Revised:  17 March 2025      Accepted manuscript online:  21 March 2025
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  67.85.-d (Ultracold gases, trapped gases)  
  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175129, 12475004, 12175027, and 12005125), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. ZDBSLY7016), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY034), the Key Research and Development Projects of Shaanxi Province, China (Grant No. 2024GX-YBXM-564), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 23JP020), and the Youth Innovation Team of Shaanxi Universities.
Corresponding Authors:  Xue-Ying Yang     E-mail:  xyyang@nudt.edu.cn

Cite this article: 

Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢) Ground state of SU(3) spin-orbit coupled soft-core Bose gas 2025 Chin. Phys. B 34 060301

[1] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[2] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[3] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[4] Spielman I B 2010 Phys. Rev. A 79 063613
[5] Cazalilla M A and Rey A M 2014 Rep. Prog. Phys. 77 124401
[6] Zhai H 2015 Rep. Prog. Phys. 78 026001
[7] Spielman I B 2013 Phys. Today 66 47
[8] Wang C, Gao C, Jian C.Mand Zhai H 2010 Phys. Rev. Lett. 105 160403
[9] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[10] Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301
[11] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y, Zhai H, Chen S and Pan J W 2015 Nat. Phys. 10 314
[12] Zhang Z and Zhou X 2016 Sci. Rep. 6 19332
[13] Satov M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[14] Qi X L, Hughes T L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[15] Liu F Y, Triki H and Zhou Q 2024 Chaos, Solitons and Fractals 188 115257
[16] Zhong Y and Zhou Q 2024 Chaos, Solitons and Fractals 188 115590
[17] Liu H T, Liu F Y, Mirzazadeh M and Zhou Q 2024 Eur. Phys. J. Plus 139 652
[18] Henkel N, Nath R and Pohl T 2010 Phys. Rev. Lett. 104 195302
[19] Henkel N, Cinti F, Jain P, Pupillo G and Pohl T 2012 Phys. Rev. Lett. 108 265301
[20] Pupillo G, Micheli A, Boninsegni M, Lesanovsky I and Zoller P 2010 Phys. Rev. Lett. 104 223002
[21] Li J, Petrovic J, Hejazi M and Yi S 2018 Phys. Rev. A 97 023628
[22] Marchetti M C, Urban D F and Shackleton C T 2010 Phys. Rev. A 81 053628
[23] Pitaevskii L P and Stringari S 2016 Bose-Einstein condensation and superfluidity (Oxford: Oxford University Press) p. 9
[24] Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301
[25] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O and Ketterle W 2017 Nature 543 91
[26] Li D, Huang L, Peng P, Bian G, Wang P, Meng Z, Chen L and Zhang J 2020 Phys. Rev. A 102 013309
[27] Luo X W, Sun K and Zhang C 2017 Phys. Rev. Lett. 119 193001
[28] Viscond T F and Furuya K 2011 J. Phys. A: Math. Theor. 44 175301
[29] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[30] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[31] Xu Y, Chu R L and Zhang C 2014 Phys. Rev. Lett. 112 136402
[32] Luo X W, Li L, Zhao Z, Zhang C and Liu Z 2017 Sci. Adv. 3 e1701513
[33] Song S W, Wang D S, Wang H and Liu W M 2012 Phys. Rev. A 85 063617
[34] Hsueh C H, Tsai Y C, Wu K S, Chang M S and Wu W C 2013 Phys. Rev. A 88 043646
[35] HanW, Zhang X F,Wang D S, Jiang H F, ZhanWand Zhang S G 2018 Phys. Rev. Lett. 121 030404
[36] Li D, Huang L, Peng P, Bian G, Wang P, Meng Z, Chen L and Zhang J 2020 Phys. Rev. A 102 013309
[37] Luo X W, Sun K and Zhang C 2017 Phys. Rev. A 119 193001
[38] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[39] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[40] Dalfovo F and Stringari S 1996 Phys. Rev. A 53 2477
[41] Bao W, Chern I L and Lim F Y 2006 J. Comp. Phys. 219 836
[42] Zhang X F, Wen L, Wang L X, Chen G P, Tan R B and Saito H 2022 Phys. Rev. A 105 033306
[43] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[44] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cóté R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[45] Lukin M D, Fleischhauer M, Cóté R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
[46] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) p. 15
[47] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[48] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[1] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[2] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[3] Spectroscopic and transition properties of strontium chloride
Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰). Chin. Phys. B, 2025, 34(4): 043101.
[4] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[5] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[6] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[7] Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms
Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(2): 023701.
[8] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[9] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[10] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[11] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[12] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[13] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[14] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[15] Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
Huan-Bo Luo(罗焕波), Xin-Feng Zhang(张鑫锋), Runhua Li(李润华), Yongyao Li(黎永耀), and Bin Liu(刘彬). Chin. Phys. B, 2024, 33(10): 100304.
No Suggested Reading articles found!