Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068301    DOI: 10.1088/1674-1056/adca1c
TOPICAL REVIEW — Structures and properties of materials under high pressure Prev   Next  

Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment

Yu Tao(陶雨) and Li Lei(雷力)†
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 China
Abstract  Iron nitride (FexNy) is a promising candidate for the next generation of ferromagnetic materials. However, synthesizing high-quality bulk iron nitride with tuned structure and magnetic properties remains a challenge. Currently, experimental and theoretical results regarding the magnetic property of iron nitrides remain controversial. With the recent advancements in high-pressure technology, new synthetic pathways to iron nitrides have been proposed. High-pressure synthesis technology provides multidimensional possibilities for tuning the structure and magnetic properties of iron nitrides. This review summarizes recent progress in high-pressure synthesis of iron nitrides, especially the high-pressure solid-state metathesis reaction synthesis (HSM). We have summarized the reaction characteristics of HSM. The HSM reaction exhibits vector synthesis characteristics and promotes nitrogen disorder diffusion at high temperature. Due to this, the HSM reaction can achieve the synthesis of multinary iron-based metal nitrides and regulate the local magnetic moments. It serves as a powerful means for tuning the structure and magnetic properties of iron nitrides. Taking advantage of neutron diffraction in characterizing local magnetic moment and nitrogen disorder in iron nitrides, the relationship between iron local magnetic moment and nitrogen content has been elucidated. Moreover, the development of high-pressure in-situ imaging technology based on large-volume press allows the real-time observation of HSM reaction process. In this review, we also report our latest experiments on neutron diffraction and high-pressure in-situ image for the study of iron nitrides.
Keywords:  iron nitride      high-pressure synthesis  
Received:  28 February 2025      Revised:  01 April 2025      Accepted manuscript online:  08 April 2025
PACS:  83.85.Hf (X-ray and neutron scattering)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 12374013 and U2030107) and the Fundamental Research Funds for the Central University (Grant No. 2020SCUNL107). The high-pressure in-situ imaging experiments were conducted at BL12SW of SSRF (Proposal No. 2024-SSRF-PT-505499).
Corresponding Authors:  Li Lei     E-mail:  lei@scu.edu.cn

Cite this article: 

Yu Tao(陶雨) and Li Lei(雷力) Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment 2025 Chin. Phys. B 34 068301

[1] Takagi R, Hirakida R, Settai Y, Oiwa R, Takagi H, Kitaori A, Yamauchi K, Inoue H, Yamaura J, Nishio-Hamane D, Itoh S, Aji S, Saito H, Nakajima T, Nomoto T, Arita R and Seki S 2025 Nat. Mater. 24 63
[2] Koemets E, Leonov I, Bykov M, Bykova E, Chariton S, Aprilis G, Fedotenko T, Clément S, Rouquette J, Haines J, Cerantola V, Glazyrin K, McCammon C, Prakapenka V B, Hanfland M, Liermann H P, Svitlyk V, Torchio R, Rosa A D, Irifune T, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2021 Phys. Rev. Lett. 126 106001
[3] Zieschang A M, Bocarsly J D, Dürrschnabel M, Molina-Luna L, Kleebe H J, Seshadri R and Albert B 2017 Chem. Mater. 29 621
[4] Mukasyan A S, Roslyakov S, Pauls J M, Gallington L C, Orlova T, Liu X, Dobrowolska M, Furdyna J K and Manukyan K V 2019 Inorg. Chem. 58 5583
[5] Chambers M S, Hunter R D, Hollamby M J, Pauw B R, Smith A J, Snow T, Danks A E and Schnepp Z 2022 Inorg. Chem. 61 6742
[6] Nadzri N I M, Ibrahim D M S and Sompon S 2019 OP Conf. Ser.: Mater. Sci. Eng. 701 012047
[7] Wojciechowski P and Lewandowski M 2022 Crystal Growth & Design 22 4618
[8] Bhattacharyya S 2015 J. Phys. Chem. C 119 1601
[9] Sims H, Butler W H, Richter M, Koepernik K, Ş aşıoglu E, Friedrich C and Blügel S 2012 Phys. Rev. B 86 174422
[10] Sakuma A 1996 J. Appl. Phys. 79 5570
[11] Ji N, Allard L F, Lara-Curzio E andWang J P 2011 Appl. Phys. Lett. 98 092506
[12] Coey J M D 1994 J. Appl. Phys. 76 6632
[13] Hang X, Matsuda M, Held J T, Mkhoyan K A andWang J P 2020 Phys. Rev. B 102 104402
[14] Hiraka H, Ohoyama K, Ogata Y, Ogawa T, Gallage R, Kobayashi N, Takahashi M, Gillon B, Gukasov A and Yamada K 2014 Phys. Rev. B 90 134427
[15] Ogawa T, Ogata Y, Gallage R, Kobayashi N, Hayashi N, Kusano Y, Yamamoto S, Kohara K, Doi M, Takano M and Takahashi M 2013 Appl. Phys. Express 6 073007
[16] Zhang C S, Yan M F, You Y, Chen H T, Zhang F Y, Bai B, Chen L, Long Z and Li R W 2014 J. Alloys Compd. 615 854
[17] Dos Santos A V and Kuhnen C A 2009 Journal of Solid State Chemistry 182 3183
[18] Gajbhiye N S, Ningthoujam R S and Bhattacharyya S 2006 Hyperfine Interact. 164 17
[19] Guo K, Rau D, Toffoletti L,Müller C, Burkhardt U, SchnelleW, Niewa R and Schwarz U 2012 Chem. Mater. 24 4600
[20] Houben A, Burghaus J and Dronskowski R 2009 Chem. Mater. 21 4332
[21] Houben A, Müller P, Von Appen J, Lueken H, Niewa R and Dronskowski R 2005 Angew Chem. Int. Ed. 44 7212
[22] Lei X, Pan X, Ye Z, Yang X, Chen X, Shi Z and Yang H 2019 ChemistrySelect 4 5945
[23] Schwarz U, Guo K, Clark W P, Burkhardt U, Bobnar M, Castillo R, Akselrud L and Niewa R 2019 Materials 12 1993
[24] Lei L and He D 2009 Crystal Growth & Design 9 1264
[25] Zhang L, Cheng Y, Lei L, Wang X, Hu Q, Wang Q, Ohfuji H, Kojima Y, Zhang Q, Zeng Z, Peng F, Kou Z, He D and Irifune T 2018 Crystal Growth & Design 18 1843
[26] Lei L, Yin W, Jiang X, Lin S and He D 2013 Inorg. Chem. 52 13356
[27] Jia X, Zhang L, Tian Y, Wu B, Tao Y, He D, Yang B, Boi F S and Lei L 2024 RSC Adv. 14 7490
[28] Lei L and Zhang L 2018 Matter and Radiation at Extremes 3 95
[29] Yin W, Lei L, Jiang X, Liu P, Liu F, Li Y, Peng F and He D 2014 High Pressure Research 34 317
[30] Wu B, Zhang F, Hu Q, Tang Q, Liu S, Xiang X, Xia Y, Fang L, Ohfuji H, Irifune T and Lei L 2021 J. Appl. Phys. 129 105901
[31] Wang S, Yu X, Zhang J, Chen M, Zhu J, Wang L, He D, Lin Z, Zhang R, Leinenweber K and Zhao Y 2012 Phys. Rev. B 86 064111
[32] Zhang H, Wu B, Liu J, Liu Z, Boi F S, He D, Irifune T and Lei L 2023 Inorg. Chem. 62 6263
[33] Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D and Irifune T 2018 J. Alloys Compd. 752 99
[34] Zhang L, Gao S, Hu Q, Qi L, Feng L and Lei L 2017 Materials Chemistry and Physics 197 94
[35] Yang K, Dong Z H, Zhou C Y, Zhao Z L, Liang D X, Cao S C and Li A G 2024 Nucl. Sci. Tech. 35 98
[36] Tai R Z and Zhao Z T 2024 Nucl. Sci. Tech. 35 137
[37] Lei L, Tang Q Q, Zhang F, Liu S, Wu B B and Zhou C Y 2020 Chin. Phys. Lett. 37 068101
[38] Laniel D, Geneste G, Weck G, Mezouar M and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[39] Ji C, Adeleke A A, Yang L,Wan B, Gou H, Yao Y, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W, Shen G, Mao W L and Mao H 2020 Sci. Adv. 6 eaba9206
[40] Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
[41] Laniel D, Dewaele A, Anzellini S and Guignot N 2018 J. Alloys Compd. 733 53
[42] Ma T, Yin Y, Hong F, Zhu P and Yu X 2021 ACS Omega 6 12591
[43] Wu B, Lei L, Zhang F, Tang Q, Liu S, Pu M, He D, Xia Y, Fang L, Ohfuji H and Irifune T 2021 Matter and Radiation at Extremes 6 038401
[44] Laniel D, Dewaele A and Garbarino G 2018 Inorg. Chem. 57 6245
[45] Minobe S, Nakajima Y, Hirose K and Ohishi Y 2015 Geophysical Research Letters 42 5206
[46] Leineweber A, Jacobs H, Hüning F, Lueken H and Kockelmann W 2001 J. Alloys Compd. 316 21
[47] Wang X, Wang Y, Kan X, Qian L, Zhang Z, Zheng G, Feng S, Lv Q, Yang Y and Liu X 2021 J. Mater Sci: Mater. Electron 32 28144
[48] Schwarz U, Wosylus A, Wessel M, Dronskowski R, Hanfland M, Rau D and Niewa R 2009 Eur. J. Inorg. Chem. 2009 1634
[49] Laniel D, Dewaele A, Anzellini S and Guignot N 2018 J. Alloys Compd. 733 53
[50] Kartsev A, Feya O D, Bondarenko N and Kvashnin A G 2019 Phys. Chem. Chem. Phys. 21 5262
[51] Lambrecht W R L, Miao M S and Lukashev P 2005 J. Appl. Phys. 97 10
[52] Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
[53] Wessel M and Dronskowski R 2011 Chemistry A European J. 17 2598
[54] Wang Z, Li Y, Li H, Harran I, Jia M,Wang H, Chen Y,Wang H andWu N 2017 J. Alloys Compd. 702 132
[55] Niwa K, Suzuki K, Muto S, Tatsumi K, Soda K, Kikegawa T and Hasegawa M 2014 Chemistry A European J. 20 13885
[56] Niwa K, Dzivenko D, Suzuki K, Riedel R, Troyan I, Eremets M and Hasegawa M 2014 Inorg. Chem. 53 697
[57] Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science 311 1275
[58] Crowhurst J C, Goncharov A F, Sadigh B, Zaug J M, Aberg D, Meng Y and Prakapenka V B 2008 J. Mater. Res. 23 1
[59] Bhadram V S, Kim D Y and Strobel T A 2016 Chem. Mater. 28 1616
[60] Hang X, Matsuda M, Held J T, Mkhoyan K A andWang J P 2020 Phys. Rev. B 102 104402
[61] Ji N, Allard L F, Lara-Curzio E andWang J P 2011 Appl. Phys. Lett. 98 092506
[62] Niwa K, Terabe T, Kato D, Takayama S, Kato M, Soda K and Hasegawa M 2017 Inorg. Chem. 56 6410
[63] Clark W P, Steinberg S, Dronskowski R, McCammon C, Kupenko I, Bykov M, Dubrovinsky L, Akselrud L G, Schwarz U and Niewa R 2017 Ingew Chem. Int. Ed. 56 7302
[64] Leineweber A, Jacobs H, Hüning F, Lueken H, Schilder H and Kockelmann W 1999 J. Alloys Compd. 288 79
[65] George E P, Raabe D and Ritchie R O 2019 Nat. Rev. Mater. 4 515
[66] Wang X, Zhan Z, Cao H and Zhang Y 2024 Ceramics International 50 14948
[67] Moskovskikh D, Vorotilo S, Buinevich V, Sedegov A, Kuskov K, Khort A, Shuck C, Zhukovskyi M and Mukasyan A 2020 Sci. Rep. 10 19874
[68] Zhao L, Yi M, Zhang C, Shan T, Zhang J, Yang D, Wang J, Bai Y, Guo Q and Xu C 2025 Ceramics International S0272884225001749
[69] Wang W, Kan X, Liu X, Dao Y, Feng S, Li Y, Liu C, Shezad M, Zhang Z and Mehmood Ur Rehman K 2020 Appl. Phys. Lett. 117 122408
[70] Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D and Irifune T 2018 J. Alloys Compd. 752 99
[71] Hiraka H, Ohoyama K, Ogata Y, Ogawa T, Gallage R, Kobayashi N, Takahashi M, Gillon B, Gukasov A and Yamada K 2014 Phys. Rev. B 90 134427
[72] Hang X, Matsuda M, Held J T, Mkhoyan K A andWang J P 2020 Phys. Rev. B 102 104402
[73] Frazer B C 1958 Phys. Rev. 112 751
[74] Zieschang A M, Bocarsly J D, Dürrschnabel M, Molina-Luna L, Kleebe H J, Seshadri R and Albert B 2017 Chem. Mater. 29 621
[75] Yamaguchi K, Yui T, Yamaki K, Kakeya I, Kadowaki K and Suemasu T 2007 Journal of Crystal Growth 301-302 597
[76] Wang W, Kan X, Liu X, Dao Y, Feng S, Li Y, Liu C, Shezad M, Zhang Z and Mehmood Ur Rehman K 2020 Appl. Phys. Lett. 117 122408
[77] Lei X, Ye Z, Qie Y, Fan Z, Chen X, Shi Z and Yang H 2019 J. Mater Sci: Mater Electron 30 277
[78] Kurian S and Gajbhiye N S 2010 Chem. Phys. Lett. 493 299
[79] Kumaresan L, Shanmugavelayutham G and Saravanan P 2022 Appl. Phys. A 128 1073
[80] Jiang Y and Jiang L 2019 AIP Advances 9 035215
[81] Jiang Y and Jiang L 2019 IEEE Trans. Magn. 55 4003907
[82] Dirba I, Yazdi M B, Radetinac A, Komissinskiy P, Flege S, Gutfleisch O and Alff L 2015 J. Magn. Magn. Mater. 379 151
[83] Dirba I, Chandra C K, Ablets Y, Kohout J, Kmječ T, Kaman O and Gutfleisch O 2023 J. Phys. D: Appl. Phys. 56 025001
[84] Naganuma H, Endo Y, Nakatani R, Kawamura Y and Yamamoto M 2004 Science and Technology of Advanced Materials 5 83
[85] Jacobs H, Rechenbach D and Zachwieja U 1995 J. Alloys Compd. 227 10
[86] Hasegawa M and Yagi T 2005 J. Alloys Compd. 403 131
[1] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[5] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[6] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[7] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[8] A-site ordered quadruple perovskite oxides AA3'B4O12
Youwen Long(龙有文). Chin. Phys. B, 2016, 25(7): 078108.
[9] HIGH-PRESSURE SYNTHESIS OF MgB2 SUPER-CONDUCTOR WITH Tc ABOVE 39 K
Li Shao-chun (李绍春), Zhu Jia-lin (朱嘉林), Yu Ri-cheng (禹日成), Li Feng-ying (李凤英), Liu Zhen-xing (刘振兴), Jin Chang-qing (靳常青). Chin. Phys. B, 2001, 10(4): 338-339.
No Suggested Reading articles found!