Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040506    DOI: 10.1088/1674-1056/ad03dd
GENERAL Prev   Next  

Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model

Xinwei Zhou(周新卫)1, Donghua Jiang(蒋东华)2,†, Jean De Dieu Nkapkop3, Musheer Ahmad4, Jules Tagne Fossi5, Nestor Tsafack6, and Jianhua Wu(吴建华)1,‡
1 Department of Information Engineering, Gongqing College, Nanchang University, Jiujiang 332020, China;
2 School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 511400, China;
3 Department of Electrical Engineering and Industrial Computing, University Institute of Technology, Douala, Cameroon;
4 Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India;
5 Department of Physics, Faculty of Science, University of Yaounde, Cameroon;
6 Electrical Engineering Department and Industrial Computing of ISTAMA, University of Douala, Douala, Cameroon
Abstract  Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function, a brand-new tristable locally active memristor model is first proposed in this paper. Here, a novel four-dimensional fractional-order memristive cellular neural network (FO-MCNN) model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its performance. Then, its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation platforms. Subsequently, it is used toward secure communication application scenarios. Taking it as the pseudo-random number generator (PRNG), a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing (ASR-CS) model. Eventually, the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
Keywords:  cellular neural network      memristor      hardware circuit      compressive sensing      privacy data protection  
Received:  11 July 2023      Revised:  30 September 2023      Accepted manuscript online:  17 October 2023
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  87.85.dq (Neural networks)  
  95.75.Mn (Image processing (including source extraction))  
Corresponding Authors:  Donghua Jiang, Jianhua Wu     E-mail:  jiangdh8@mail2.sysu.edu.cn;jhwu@ncu.edu.cn

Cite this article: 

Xinwei Zhou(周新卫), Donghua Jiang(蒋东华), Jean De Dieu Nkapkop, Musheer Ahmad, Jules Tagne Fossi, Nestor Tsafack, and Jianhua Wu(吴建华) Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model 2024 Chin. Phys. B 33 040506

[1] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[2] Hindmarsh J L and Rose R M 1982 Nature 296 162
[3] Hopfield J J 1984 Proc. Natl. Acad. Sci. USA 81 3088
[4] Chua L O and Yang L 1988 IEEE Transactions on Circuits and Systems 35 1273
[5] Yang T, Yang L B, Wu C W and Chua L O 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications pp. 181——186
[6] Cao J and Zhou D 1998 Neural Networks 11 1601
[7] Hu X, Feng G, Duan S and Liu L 2017 IEEE Transactions on Neural Networks and Learning Systems 28 1889
[8] Chen L, Yin H, Huang T, Yuan L, Zheng S and Yin L 2020 Neural Networks 125 174
[9] Chen L, Cao J, Wu R, Tenreiro Machado J A, Lopes A M and Yang H 2017 Neural Networks 94 76
[10] Jo S H 2010 Nanoscale memristive devices for memory and logic applications University of Michigan ProQuest Dissertations Publishing, 2010.3406295
[11] Lai Q, Wan Z, Zhang H and Chen G 2022 IEEE Transactions on Neural Networks and Learning Systems, pp. 1——14
[12] Jin P, Wang G, Iu H H C and Fernando T 2018 IEEE Transactions on Circuits and Systems II:Express Briefs 65 246
[13] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[14] Sweilam N H and AL-Mekhlafi S M 2022 In Fractional-Order Modeling of Dynamic Systems with Applications in Optimization, Signal Processing and Control, pp. 97——118
[15] Candes E J and Wakin M B 2008 IEEE Signal Processing Magazine 25 21
[16] Donoho D L 2006 IEEE Transactions on Information Theory 52 1289
[17] Zhou S, Deng X, Li C, Liu Y and Jiang H 2023 IEEE Transactions on Multimedia 25 2022
[18] Baraniuk R G 2007 IEEE Signal Processing Magazine 24 118
[19] Tang G and Nehorai A 2011 IEEE Transactions on Signal Processing 59 5734
[20] Lopes M E 2013 International Conference on Machine Learning 28 217
[21] Khalil N A, Said L A, Radwan A G and Soliman A M 2022 Fractional Order Systems 375
[22] Li C, Yang Y, Yang X, Zi X and Xiao F 2022 Nonlinear Dyn. 108 1697
[23] Njitacke Z T, Sone M E, Fozin T F, Tsafack N, Leutcho G D and Tchapga C T 2021 Euro. Phys. J.:Spec. Top. 230 1839
[24] Nestor T, de Dieu, N J, Jacques K, Yves E J, Iliyasu A M and Abd El-Latif A A 2020 Sensors 20
[25] Hua Z, Zhang K, Li Y and Zhou Y 2021 Signal Processing 183
[26] Li L, Peng H, Liu L and Yang Y 2018 International Symposium on Security and Privacy in Social Networks and Big Data, 18866867
[27] Ma Y, Li C and Ou B 2020 Journal of Information Security and Applications 54 102566
[28] Zhu L, Song H, Zhang X, Yan M, Zhang T, Wang X and Xu J 2020 Signal Processing 175
[29] Niu Z, Zheng M, Zhang Y and Wang T 2020 IEEE Internet of Things Journal 7 734
[30] Wang X, Ren Q and Jiang D 2021 Nonlinear Dyn. 104 4543
[31] Azam N A, Hayat U and Ayub M 2021 Signal Processing 187
[32] Erkan U, Toktas A, Toktas F and Alenezi F 2022 Information Sciences 589 770
[33] Naskar P K, Bhattacharyya S, Mahatab K C, Dhal K G and Chaudhuri A 2021 Nonlinear Dyn. 105 3673
[34] Zou C, Wang X and Li H 2021 Nonlinear Dyn. 105 859
[35] Hua Z, Li J, Chen Y and Yi S 2021 Nonlinear Dyn. 103 807
[36] Cao C, Sun K and Liu W 2018 Signal Processing 143 122
[37] Kaur G, Agarwal R and Patidar V 2020 Engineering Science and Technology 23 998
[38] Hua Z, Zhu Z, Chen Y and Li Y 2021 Nonlinear Dyn. 104 4505
[39] Li X, Zhou L and Tan F 2022 Soft Computing 26 511
[40] Chai X, Fu J, Gan Z, Lu Y and Zhang Y 2022 Nonlinear Dyn. 108 2671
[1] Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛). Chin. Phys. B, 2024, 33(5): 050503.
[2] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[3] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[4] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[5] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[6] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[7] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[8] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[9] Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
Peiwen Tong(童霈文), Hui Xu(徐晖), Yi Sun(孙毅), Yongzhou Wang(汪泳州), Jie Peng(彭杰),Cen Liao(廖岑), Wei Wang(王伟), and Qingjiang Li(李清江). Chin. Phys. B, 2023, 32(7): 078505.
[10] A progressive surrogate gradient learning for memristive spiking neural network
Shu Wang(王姝), Tao Chen(陈涛), Yu Gong(龚钰), Fan Sun(孙帆), Si-Yuan Shen(申思远), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2023, 32(6): 068704.
[11] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
[12] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[13] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[14] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[15] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
No Suggested Reading articles found!