Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064702    DOI: 10.1088/1674-1056/adbd29
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Adsorption-modulated dynamical stability of nanobubbles at the solid-liquid interface

Guiyuan Huang(黄桂源)1, Lili Lan(蓝礼礼)1, Binghai Wen(闻炳海)1, Li Yang(阳丽)1,†, and Yong Yang(杨勇)2,1,‡
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We study the effects of gas adsorption on the dynamics and stability of nanobubbles at the solid-liquid interface. The phase diagram and dynamic evolution of surface nanobubbles were analyzed under varying equilibrium adsorption constant. Four distinct dynamic behaviors appear in the phase diagram: shrinking to dissolution, expanding to bursting, shrinking to stability, and expanding to stability. Special boundary states are identified in phase diagram, where the continuous growth of nanobubbles can take place even under very weak gas-surface interaction or with very small initial bubble size. Surface adsorption plays a critical role in the stability, lifetime, radius, and contact angle of nanobubbles, thereby demonstrating that pinning is not a prerequisite for stabilization. Furthermore, stable equilibrium nanobubbles exhibit a characteristic range of footprint radius, a limited height, and a small contact angle, consistent with experimental observations.
Keywords:  nanobubbles      solid-liquid interface      phase diagram      gas adsorption  
Received:  10 January 2025      Revised:  10 February 2025      Accepted manuscript online:  06 March 2025
PACS:  47.55.dd (Bubble dynamics)  
  64.60.Ej (Studies/theory of phase transitions of specific substances)  
  67.80.bf (Liquid-solid interfaces; growth kinetics)  
Fund: Project supported by the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2022GXNSFAA035487), the National Natural Science Foundation of China (Grant Nos. 12272100, 11474285, and 12074382), the Graduate Education Innovation Project of Guangxi Zhuang Autonomous Region, China (Grant No. XJCY2022012), the Guangxi Normal University Ideological and Political Demonstration Course Construction Project (Grant Nos. 2022kcsz15 and 2023kcsz29), and the Innovation Project of Graduate Education of Guangxi Zhuang Autonomous Region, China (Grant No. YCBZ2024087).
Corresponding Authors:  Li Yang, Yong Yang     E-mail:  yangli@mailbox.gxnu.edu.cn;yyanglab@issp.ac.cn

Cite this article: 

Guiyuan Huang(黄桂源), Lili Lan(蓝礼礼), Binghai Wen(闻炳海), Li Yang(阳丽), and Yong Yang(杨勇) Adsorption-modulated dynamical stability of nanobubbles at the solid-liquid interface 2025 Chin. Phys. B 34 064702

[1] Lohse D and Zhang X 2015 Rev. Mod. Phys. 87 981
[2] Tan B H, An H and Ohl C D 2021 Curr. Opin. Colloid Interface Sci. 53 101428
[3] Zhu J, An H and Alheshibri M 2016 Langmuir 32 11203
[4] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377
[5] Oeffinger B E and Wheatley M A 2004 Ultrasonics 42 343
[6] Li H Z, Hu L M, Song D J and Lin F 2014 Water Environment Res. 86 844
[7] Tyrrell J W and Attard P 2001 Phys. Rev. Lett. 87 176104
[8] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[9] Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China, Ser. G 51 219
[10] Liu Y and Zhang X 2013 J. Chem. Phys. 138 014706
[11] Ducker W A 2009 Langmuir 25 8907
[12] Seddon J R T, Zandvlie H J W and Lohse D 2011 Phys. Rev. Lett. 107 116101
[13] Li D Y, Wang W J and Zhao X Z 2012 Preg. Chem. 24 1447
[14] Chen Y X, Chen Y L and Yen T H 2018 Langmuir 34 15360
[15] Guo Z, Wang X and Zhang X 2019 Langmuir 35 8482
[16] Teshima H, Kusudo H, Bistafa C and Yamaguchi Y 2022 Nanoscale 14 2446
[17] Petsev N D, Leal L G and Shell M S 2020 Phys. Rev. Lett. 125 146101
[18] Zhou L, Wang X, Shin H J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J and Zhang L 2020 J. Am. Chem. Soc. 142 5583
[19] Yen T H, Lin C H and Chen Y L 2021 Langmuir 37 2759
[20] Pan Y C, Zhou L M and Wen B H 2022 Phys. Fluids 34 072007
[21] Wen B H, Pan Y C, Zhang L J, Wang S, Zhou L M, Wang C L and Hu J 2022 Phys. Rev. Fluids 7 103601
[22] Tortora M, Meloni S, Tan B H, et al. 2020 Nanoscale 12 22698
[23] Donaldson S H, Røyne A, Kristiansen K, et al. 2015 Langmuir 31 2051
[24] Zhang J, Wang P, Borg M K, Reese J M and Wen D 2003 Phys. Fluids 30 082003
[25] Popov Y O 2005 Phys. Rev. E 71 036313
[26] Lohse D and Zhang X 2015 Phys. Rev. E 91 031003
[27] Tan B H, An H and Ohl C D 2018 Phys. Rev. Lett. 120 164502
[28] Wang Z L, Yang L, Liu C S and Lin S W 2023 Chin. Phys. B 32 023101
[29] Liu Y W and Zhan X R 2018 Chin. Phys. B 27 014401
[30] Zhang L, Wang C, Tai R, Hu J and Fang H 2012 Chem. Phys. Chem. 13 2188
[31] Zhang X H, Quinn A and Ducker W A 2008 Langmuir 24 4756
[32] Lan L L, Pan Y C, Zhou L M, Kuang H, Zhang L J and Wen B H 2025 J. Colloid Interf. Sci. 678 322
[33] Teshima H, Nishiyama T and Takahashi K 2017 J. Chem. Phys. 146 014708
[34] Yang Y and Meng S 2006 J. Chem. Phys. 126 044708
[35] Xie J J, Jiang P and Zhang K M 1996 J. Chem. Phys. 104 9994
[36] Smeets E W F, Voss J and Kroes G J 2019 J. Phys. Chem. A 123 5395
[37] Yu X F, Tong Y W and Yang Y 2023 Chin. Phys. B 32 108103
[38] Christmann K, Ertl G and Pignet T 1976 Surf. Sci. 54 365
[39] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
[40] Tong Y W and Yang Y 2024 Chin. Phys. Lett. 41 086801
[1] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[2] Stable nanobubbles on ordered water monolayer near ionic model surfaces
Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷). Chin. Phys. B, 2025, 34(1): 014701.
[3] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[4] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[5] Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid
Jackson Pame and Lenin S. Shagolsem. Chin. Phys. B, 2024, 33(7): 074702.
[6] In situ observation of the phase transformation kinetics of bismuth during shock release
Jiangtao Li(李江涛), Qiannan Wang(王倩男), Liang Xu(徐亮), Lei Liu(柳雷), Hang Zhang(张航), Sota Takagi, Kouhei Ichiyanagi, Ryo Fukaya, Shunsuke Nozawa, and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(4): 046401.
[7] Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
Ruike Zhang(张瑞柯), Ruiang Guo(郭睿昂), Qian Li(李倩), Shuaiqi Li(李帅琦), Haidong Long(龙海东), and Duanwei He(贺端威). Chin. Phys. B, 2024, 33(10): 108103.
[8] High-pressure new phases of V-N compounds
Xu-Han Shi(时旭含), Zhi-Hui Li(李志慧), Yuanyuan Liu(刘媛媛), Yuanyuan Wang(王元元), Ran Liu(刘冉), Kuo Hu(胡阔), and Zhen Yao(姚震). Chin. Phys. B, 2023, 32(5): 056103.
[9] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[10] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[11] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[12] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[13] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[14] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[15] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
No Suggested Reading articles found!