Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064701    DOI: 10.1088/1674-1056/adbed8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Study on adaptive mesh method in the problem of underwater shock waves near water surface

Fang Wang(王芳)1, Xinpeng Yuan(原新鹏)2,†, and Jianzhu An(安建祝)1
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
2 State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Meteorological Administration, Beijing 100081, China
Abstract  This paper focuses on the application of the adaptive mesh method in the study of underwater shock waves near the water surface. By integrating theoretical analysis with a five-equation model under axisymmetric coordinates, we developed an optimized computational framework for multi-material fluid simulations. The moving mesh method (r-method) is used to accurately capture complex underwater shock wave systems. Multiple numerical experiments are conducted, including deep-water explosions, near-surface explosions for both spherical charge and cylindrical charge, and regular-irregular reflection interface calculations. The results show that compared to the fixed mesh method, the adaptive mesh method provides results closer to the theoretical values and achieves local high-resolution computation of multi-material fluids. By adjusting the adaptive function, different mesh refinement effects can be obtained. This method also has certain advantages in calculating the regular-irregular reflection interface in underwater explosions. This study establishes a validated computational framework for underwater explosion research, enhancing the predictive accuracy for underwater shock wave propagation in engineering assessments and providing new insights into the fundamental physics of multi-material explosion phenomena.
Keywords:  adaptive mesh      shock wave      five equations      underwater  
Received:  24 October 2024      Revised:  26 February 2025      Accepted manuscript online:  11 March 2025
PACS:  47.40.-x (Compressible flows; shock waves)  
  47.40.Nm (Shock wave interactions and shock effects)  
  02.70.-c (Computational techniques; simulations)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the Overall Planning and Development Project of China Academy of Engineering Physics (CAEP) (Grant No. TCGH0909), the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences (CAMS) (Grant No. 2023KJ048), and the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2023Z001).
Corresponding Authors:  Xinpeng Yuan     E-mail:  yuanxp@cma.gov.cn,yuanxinpeng1987@163.com

Cite this article: 

Fang Wang(王芳), Xinpeng Yuan(原新鹏), and Jianzhu An(安建祝) Study on adaptive mesh method in the problem of underwater shock waves near water surface 2025 Chin. Phys. B 34 064701

[1] Tian Z L, Liu Y L, Wang S P, Zhang A M and Kang Y W 2019 CMESComp. Model. Eng. 118 397
[2] Cole R H 1948 Underwater Explosions (Princeton: Princeton Univ. Press)
[3] Zamyshlyayev B V 1973 Dynamic load in underwater explosion
[4] Rajasekar J, Kim T H and Kim H D 2020 J. Visual-Japan. 23 825
[5] Petrov N V and Schmidt A A 2011 Tech. Phys. Lett. 37 445
[6] Chan S K 1992 Proceedings of shock & vibration symposium saviac
[7] Molyneaux T C K, Li L Y and Firth N 1994 Comput. Fluids 23 903
[8] Brett J M 1998 Defence Science and Technology Organisation Canberra
[9] Wu W B, Zhang, A M, Liu Y L and Wang S P 2019 Appl. Ocean. Res. 87 102
[10] Wang G H, Zhang S R, Yu M, Li H B and Kong Y 2014 Appl. Ocean. Res. 46 40
[11] Wang G H, Wang Y X, Lu W B, Zhou W, Chen M and Yan P 2016 Appl. Ocean. Res. 59 1
[12] Tang T, Li N and Zhang Z R 2023 Moving grid method for partial differential equations (Beijing: Science Press) pp. 4-5 (in Chinese)
[13] Zheng HW, Shu C, Chew Y T and Qin N 2011 Int. J. Numer. Meth. Fl. 67 616
[14] Li R, Tang T and Zhang P W 2002 J. Comput. Phys. 177 365
[15] Ning J G, Yuan X P, Ma T B and Wang C 2015 Comput. Fluids 123 72
[16] Ning J G, Yuan X P, Ma T B and Li J 2017 Sci. Program. 5896940
[17] Berger M J, and Oliger J 1984 J. Comput. Phys. 53 484
[18] L ohner R and Morgan K 1987 Int. J. Numer. Meth. Eng. 24 101
[19] Tezduyar T E, Mittal S, Ray S E and Shih R 1992 Comput. Method. Appl. M. 95 221
[20] Persson P O and Peraire J 2006 American Institute of Aeronautics and Astronautics 112
[21] Deng Y T, Wang M D, Kong X X, Xiong S Y, Xian Z Y and Zhu B 2022 Assoc. Comput. Mach. 41 1
[22] Dwyer H A, Kee R and Sanders B R 2012 AIAA J. 1 1205
[23] Rachowicz W and Demkowicz L 2000 Comput. Method. Appl. M. 187 307
[24] Falla R, Bobach B J, Boman R, Ponthot J and Terrapon V 2023 Comput. Part. Mech. 10 1049
[25] Huang W Z, Ren Y H and Robert D R 1994 J. Comput. Phys. 113 279
[26] Scardovelli R and Zaleski S 1999 Annu. Rev. Fluid. Mech. 31 567
[27] Abgrall R and Karni S 2001 J. Comput. Phys. 169 594
[28] Allaire G, Clerc S and Kokh S 2002 J. Comput. Phys. 181 577
[29] WhiteWJ, Huang Z Y and Johnsen E 2024 American Institute of Aeronautics and Astronautics 1755
[30] PriceMA, Nguyen V T, Hassan O and Morgan K 2015 Comput. Fluids 111 76
[31] Hu Y b and Li F Y 2020 Adv. Nonlinear Ana. 10 584
[32] Saurel R and Abgrall R 1999 J. Comput. Phys. 150 425
[33] Perthame B and Shu C W 1996 Numer. Math. 73 119
[34] Leer B V 1979 J. Comput. Phys. 135 229
[35] Ning J G, Yuan X P, Ma T B and Wang C 2016 Appl. Math. Comput. 282 1
[36] Tang H Z and Tang Tao 2003 SIAM J. Numer. Anal. 41 487
[37] Snay H G, Butler J F and Gleyzal A 1957 Predictions of underwater explosion phenomena
[38] Kamegai M, Rosenkilde C E and Klein L S 1987 Lawrence Livermore National Laboratory report UCRL96960
[39] Loborev V M, Zamyshlyayev B V, Maslin E P and Shilobreev B A 1997 Moscow Publishing House pp. 477-478 (in Russian)
[40] Liu R Z and Shu Q W 2002 Computational Fluid Dynamics Tutorial (Beijing: Science Press) pp. 26-29 (in Chinese)
[41] Zhang D L 2010 Several new methods in computational fluid dynamics (Beijing: Higher Education Press) pp. 252-255 (in Chinese)
[1] Energy-distributable waterborne acoustic launcher for directional sensing
Tian Yang(杨天), Wenting Gao(高文婷), Shida Fan(范世达), Jie Ren(任捷), and Tianzhi Yang(杨天智). Chin. Phys. B, 2023, 32(12): 124302.
[2] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[3] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[4] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[5] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
[6] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[7] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[8] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[9] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[10] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[11] Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
Qian Zhao(赵倩), Jian-Xin Nie(聂建新), Wei Zhang(张伟), Qiu-Shi Wang(王秋实), Qing-Jie Jiao(焦清介). Chin. Phys. B, 2017, 26(5): 054502.
[12] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[13] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[14] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[15] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
No Suggested Reading articles found!