Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050204    DOI: 10.1088/1674-1056/adbd26
GENERAL Prev   Next  

Exactly solvable models for non-Hermitian systems under nonadiabatic quench dynamics

Kangyi Hu(胡康溢), Menghua Deng(邓孟华), and Fuxiang Li(李福祥)†
School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Due to the nonunitary time evolution and possibly complex energy eigenvalues in non-Hermitian systems, it is still under debate how to properly deal with the dynamics of time-dependent non-Hermitian Hamiltonian. Recently a quantum metric framework has been proposed to study the dynamics of generated defects of a non-Hermitian system under linear quench. Here, we provide an explicit expression for the endowed Hamiltonian under quantum metric for a general two-level non-Hermitian system. Then we propose two exactly solvable models for the study of nonadiabatic dynamics of non-Hermitian systems, and analyze the defect production using the metric method. We find that, in contrast to the direct normalization method, the metric method can reproduce the symmetry of generated defects. The power-law scaling of generated defects with respect to quench time is also obtained.
Keywords:  quantum metric      non-Hermitian      quench      non-adiabatic  
Received:  30 November 2024      Revised:  22 January 2025      Accepted manuscript online:  06 March 2025
PACS:  02.60.-x (Numerical approximation and analysis)  
  02.60.Jh (Numerical differentiation and integration)  
  03.65.-w (Quantum mechanics)  
  33.50.Hv (Radiationless transitions, quenching)  
Fund: Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2021YFA1200700), the National Natural Science Foundation of China (Grant Nos. 11905054 and 12275075), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Fuxiang Li     E-mail:  fuxiangli@hnu.edu.cn

Cite this article: 

Kangyi Hu(胡康溢), Menghua Deng(邓孟华), and Fuxiang Li(李福祥) Exactly solvable models for non-Hermitian systems under nonadiabatic quench dynamics 2025 Chin. Phys. B 34 050204

[1] Yoshida T, Peters R and Kawakami N 2018 Phys. Rev. B 98 035141
[2] Shen H and Fu L 2018 Phys. Rev. Lett. 121 026403
[3] Nagai Y, Qi Y, Isobe H, Kozii V and Fu L 2020 Phys. Rev. Lett. 125 227204
[4] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[5] Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402
[6] Malzard S, Poli C and Schomerus H 2015 Phys. Rev. Lett. 115 200402
[7] Rotter I 2009 J. Phys. A: Math. Theor. 42 153001
[8] Mao Y, Zhong P, Lin H, Wang X and Hu S 2024 Chin. Phys. Lett. 41 070301
[9] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[10] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[11] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201
[12] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[13] Zhang X J, Zhang T, Lu M H and Chen Y F 2022 Adv. Phys. X 7 2109431
[14] Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[15] Liégeois B, Chitra R and Defenu N 2023 Phys. Rev. D 108 116014
[16] Lee T E 2016 Phys. Rev. Lett. 116 133903
[17] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[18] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[19] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[20] Xiong Y 2018 J. Phys. Commun. 2 035043
[21] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[22] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[23] Xu Z and Chen S 2021 Phys. Rev. A 103 043325
[24] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767
[25] Lin Z, Zhang L, Long X, Fan Y a, Li Y, Tang K, Li J, Nie X, Xin T, Liu X J et al. 2022 npj Quantum Information 8 77
[26] Liu H, Yang X, Tang K, Che L, Nie X, Xin T, Li J and Lu D 2023 Phys. Rev. A 107 062608
[27] Kawabata K, Numasawa T and Ryu S 2023 Phys. Rev. X 13 021007
[28] Yoshimura T, Bidzhiev K and Saleur H 2020 Phys. Rev. B 102 125124
[29] McDonald A, Hanai R and Clerk A A 2022 Phys. Rev. B 105 064302
[30] Zhai L J, Huang G Y and Yin S 2022 Phys. Rev. B 106 014204
[31] Das Agarwal K, Konar T K, Lakkaraju L G C and Sen (De) A 2024 Phys. Rev. A 110 012226
[32] Das Agarwal K, Konar T K, Lakkaraju L G C and Sen (De) A 2023 arXiv: 2305.08374v1 [quant-ph]
[33] Matsoukas-Roubeas A S, Roccati F, Cornelius J, Xu Z, Chenu A and del Campo A 2023 J. High Energy Phys. 2023 1
[34] Dong X P, Feng Z B, Lu X J, Li M and Zhao Z Y 2023 Chin. Phys. B 32 034201
[35] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249
[36] Turkeshi X and Schiró M 2023 Phys. Rev. B 107 L020403
[37] Dóra B, Heyl M and Moessner R 2019 Nat. Commun. 10 2254
[38] Bácsi A and Dóra B 2021 Phys. Rev. B 103 085137
[39] Dóra B, Sticlet D and Moca C P 2022 Phys. Rev. Lett. 128 146804
[40] Dóra B and Moca C P 2020 Phys. Rev. Lett. 124 136802
[41] Longstaff B and Graefe E M 2019 Phys. Rev. A 100 052119
[42] Brody D C 2013 J. Phys. A: Math. Theor. 47 035305
[43] Jing Y, Dong J J, Zhang Y Y and Hu Z X 2024 Phys. Rev. Lett. 132 220402
[44] Mostafazadeh A 2020 Entropy 22 471
[45] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114
[46] Mostafazadeh A 2018 Phys. Rev. D 98 046022
[47] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114
[48] Fring A and Frith T 2018 J. Phys. A: Math. Theor. 51 265301
[49] Feinberg J and Znojil M 2022 J. Math. Phys. 63 013505
[50] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Verlag)
[51] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408
[52] Ashida Y and Ueda M 2018 Phys. Rev. Lett. 120 185301
[53] Sim K, Defenu N, Molignini P and Chitra R 2023 Phys. Rev. Lett. 131 156501
[54] Sim K, Defenu N, Molignini P and Chitra R 2025 Phys. Rev. Res. 7 013325
[1] First- and second-order magnonic topologies in the ferromagnetic breathing SSH model modulated by non-Hermitian effects
Huasu Fu(付华宿), Lichuan Zhang(张礼川), Rami Mrad, Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 067506.
[2] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[3] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[4] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[5] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[6] Dynamical localization in a non-Hermitian Floquet synthetic system
Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2024, 33(5): 050507.
[7] Real eigenvalues determined by recursion of eigenstates
Tong Liu(刘通) and Youguo Wang(王友国). Chin. Phys. B, 2024, 33(3): 030303.
[8] Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
Xiang-Long Zeng(曾相龙), Wen-Xi Lai(赖文喜), Yi-Wen Wei(魏祎雯), and Yu-Quan Ma(马余全). Chin. Phys. B, 2024, 33(3): 030310.
[9] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[10] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[11] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[12] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[13] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[14] Exact solution of slow quench dynamics and nonadiabatic characterization of topological phases
Rui Wu(邬睿), Panpan Fang(房盼攀), Chen Sun(孙辰), and Fuxiang Li(李福祥). Chin. Phys. B, 2023, 32(8): 080304.
[15] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
No Suggested Reading articles found!