Abstract Due to the nonunitary time evolution and possibly complex energy eigenvalues in non-Hermitian systems, it is still under debate how to properly deal with the dynamics of time-dependent non-Hermitian Hamiltonian. Recently a quantum metric framework has been proposed to study the dynamics of generated defects of a non-Hermitian system under linear quench. Here, we provide an explicit expression for the endowed Hamiltonian under quantum metric for a general two-level non-Hermitian system. Then we propose two exactly solvable models for the study of nonadiabatic dynamics of non-Hermitian systems, and analyze the defect production using the metric method. We find that, in contrast to the direct normalization method, the metric method can reproduce the symmetry of generated defects. The power-law scaling of generated defects with respect to quench time is also obtained.
Fund: Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2021YFA1200700), the National Natural Science Foundation of China (Grant Nos. 11905054 and 12275075), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:
Fuxiang Li
E-mail: fuxiangli@hnu.edu.cn
Cite this article:
Kangyi Hu(胡康溢), Menghua Deng(邓孟华), and Fuxiang Li(李福祥) Exactly solvable models for non-Hermitian systems under nonadiabatic quench dynamics 2025 Chin. Phys. B 34 050204
[1] Yoshida T, Peters R and Kawakami N 2018 Phys. Rev. B 98 035141 [2] Shen H and Fu L 2018 Phys. Rev. Lett. 121 026403 [3] Nagai Y, Qi Y, Isobe H, Kozii V and Fu L 2020 Phys. Rev. Lett. 125 227204 [4] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 [5] Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402 [6] Malzard S, Poli C and Schomerus H 2015 Phys. Rev. Lett. 115 200402 [7] Rotter I 2009 J. Phys. A: Math. Theor. 42 153001 [8] Mao Y, Zhong P, Lin H, Wang X and Hu S 2024 Chin. Phys. Lett. 41 070301 [9] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 [10] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005 [11] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201 [12] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402 [13] Zhang X J, Zhang T, Lu M H and Chen Y F 2022 Adv. Phys. X 7 2109431 [14] Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005 [15] Liégeois B, Chitra R and Defenu N 2023 Phys. Rev. D 108 116014 [16] Lee T E 2016 Phys. Rev. Lett. 116 133903 [17] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [18] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801 [19] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [20] Xiong Y 2018 J. Phys. Commun. 2 035043 [21] Jin L and Song Z 2019 Phys. Rev. B 99 081103 [22] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 [23] Xu Z and Chen S 2021 Phys. Rev. A 103 043325 [24] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767 [25] Lin Z, Zhang L, Long X, Fan Y a, Li Y, Tang K, Li J, Nie X, Xin T, Liu X J et al. 2022 npj Quantum Information 8 77 [26] Liu H, Yang X, Tang K, Che L, Nie X, Xin T, Li J and Lu D 2023 Phys. Rev. A 107 062608 [27] Kawabata K, Numasawa T and Ryu S 2023 Phys. Rev. X 13 021007 [28] Yoshimura T, Bidzhiev K and Saleur H 2020 Phys. Rev. B 102 125124 [29] McDonald A, Hanai R and Clerk A A 2022 Phys. Rev. B 105 064302 [30] Zhai L J, Huang G Y and Yin S 2022 Phys. Rev. B 106 014204 [31] Das Agarwal K, Konar T K, Lakkaraju L G C and Sen (De) A 2024 Phys. Rev. A 110 012226 [32] Das Agarwal K, Konar T K, Lakkaraju L G C and Sen (De) A 2023 arXiv: 2305.08374v1 [quant-ph] [33] Matsoukas-Roubeas A S, Roccati F, Cornelius J, Xu Z, Chenu A and del Campo A 2023 J. High Energy Phys. 2023 1 [34] Dong X P, Feng Z B, Lu X J, Li M and Zhao Z Y 2023 Chin. Phys. B 32 034201 [35] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249 [36] Turkeshi X and Schiró M 2023 Phys. Rev. B 107 L020403 [37] Dóra B, Heyl M and Moessner R 2019 Nat. Commun. 10 2254 [38] Bácsi A and Dóra B 2021 Phys. Rev. B 103 085137 [39] Dóra B, Sticlet D and Moca C P 2022 Phys. Rev. Lett. 128 146804 [40] Dóra B and Moca C P 2020 Phys. Rev. Lett. 124 136802 [41] Longstaff B and Graefe E M 2019 Phys. Rev. A 100 052119 [42] Brody D C 2013 J. Phys. A: Math. Theor. 47 035305 [43] Jing Y, Dong J J, Zhang Y Y and Hu Z X 2024 Phys. Rev. Lett. 132 220402 [44] Mostafazadeh A 2020 Entropy 22 471 [45] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114 [46] Mostafazadeh A 2018 Phys. Rev. D 98 046022 [47] Fring A and Moussa M H Y 2016 Phys. Rev. A 93 042114 [48] Fring A and Frith T 2018 J. Phys. A: Math. Theor. 51 265301 [49] Feinberg J and Znojil M 2022 J. Math. Phys. 63 013505 [50] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Verlag) [51] Graefe E M, Korsch H J and Niederle A E 2008 Phys. Rev. Lett. 101 150408 [52] Ashida Y and Ueda M 2018 Phys. Rev. Lett. 120 185301 [53] Sim K, Defenu N, Molignini P and Chitra R 2023 Phys. Rev. Lett. 131 156501 [54] Sim K, Defenu N, Molignini P and Chitra R 2025 Phys. Rev. Res. 7 013325
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.