|
|
Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model |
Xiang-Long Zeng(曾相龙), Wen-Xi Lai(赖文喜), Yi-Wen Wei(魏祎雯), and Yu-Quan Ma(马余全)† |
School of Science, Beijing Information Science and Technology University, Beijing 100192, China |
|
|
Abstract We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger (SSH) model with long-range hopping terms. By computing the quantum geometry tensor, we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons, and we obtain the phase diagram of the model marked by the first Chern number. Furthermore, we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone. However, some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric, which leads to ill-defined non-integer topological Euler numbers. Nevertheless, the non-integer "Euler number" provides valuable insights and an upper bound for the absolute values of the Chern numbers.
|
Received: 16 July 2023
Revised: 20 October 2023
Accepted manuscript online: 01 December 2023
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
75.10.Pq
|
(Spin chain models)
|
|
05.70.Jk
|
(Critical point phenomena)
|
|
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. 1232026), the Qinxin Talents Program of BISTU (Grant No. QXTCP C201711), the R&D Program of Beijing Municipal Education Commission (Grant No. KM202011232017), the National Natural Science Foundation of China (Grant No. 12304190), and the Research fund of BISTU (Grant No. 2022XJJ32). |
Corresponding Authors:
Yu-Quan Ma
E-mail: abelish@163.com
|
Cite this article:
Xiang-Long Zeng(曾相龙), Wen-Xi Lai(赖文喜), Yi-Wen Wei(魏祎雯), and Yu-Quan Ma(马余全) Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model 2024 Chin. Phys. B 33 030310
|
[1] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 [2] Hasan M Z and Kane C L 2021 Rev. Mod. Phys. 82 3045 [3] X L Qi and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [4] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [5] Witten E 2016 Rev. Mod. Phys. 88 035001 [6] Li C F, Li X P and Wang L C 2018 Europhys. Lett. 124 37003 [7] Chiu C K, et al. 2016 Rev. Mod. Phys. 88 035005 [8] Kitaev A Y 2001 Phys. Usp 44 131 [9] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [10] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308 [11] Zak J 1989 Phys. Rev. Lett. 62 2747 [12] Li X P, Zhao E H and Liu W V 2013 Nat. Commun. 4 1523 [13] Delplace P, Ullmo D and Montambaux G 2011 Phys. Rev. B 84 195452 [14] Ganeshan S, Sun K and Das S S 2013 Phys. Rev. Lett. 110 180403 [15] Li L H, Xu Z H and Chen S 2014 Phys. Rev. B 89 085111 [16] Takayama H, Lin-Liu Y R and Maki K 1980 Phys. Rev. B 21 2388 [17] Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099 [18] Jackiw R and Rebbi C 1976 Phys. Rev. D 13 3398 [19] Heeger A J, et al. 1988 Rev. Mod. Phys. 60 781 [20] Ruostekoski J, Dunne G V and Javanainen J 2002 Phys. Rev. Lett. 88 180401 [21] Li M, Pernice W H P and Tang H X 2009 Nat. Photon. 3 464 [22] Weis S, et al. 2010 Science 330 1520 [23] Lin, Q, et al. 2009 Phys. Rev. Lett. 103 103601 [24] Xu X, et al. 2022 Front. Phys. 9 813801 [25] Provost J and Vallee G 1980 Communications in Mathematical Physics 76 289 [26] Ma Y Q, et al. 2010 Phys. Rev. B 81 245129 [27] Sachdev S 1999 Physics World 12 33 [28] Sondhi S L, Girvin S M and Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315 [29] Vojta M 2003 Rep. Prog. Phys. 66 2069 [30] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804 [31] Haldane F 2004 Phys. Rev. Lett. 93 206602 [32] Rhim J W, Kim K and Yang B J 2020 Nature 584 59 [33] Peotta S and Torma P 2015 Nat. Commun. 6 8944 [34] Huhtinen K E, Herzog-Arbeitman J, Chew A, Bernevig B A and Torma P 2022 Phys. Rev. B 106 014518 [35] Gao Y and Xiao D 2019 Phys. Rev. Lett. 122 227402 [36] Lapa M F and Hughes T L 2019 Phys. Rev. B 99 121111 [37] Kozii V, Avdoshkin A, Zhong S and Moore J E 2021 Phys. Rev. Lett. 126 156602 [38] Mitscherling J and Holder T 2022 Phys. Rev. B 105 085154 [39] Ahn J, Guo G Y, Nagaosa N, et al. 2022 Nat. Phys. 18 290 [40] Chen W and Huang W 2021 Phys. Rev. Res. 3 L042018 [41] Titus Neupert, et al. 2013 Phys. Rev. B 87 245103 [42] Ajit S and Imamolu A 2015 Phys. Rev. Lett. 115 166802 [43] Albert V V, Bradlyn B, Fraas M, et al. 2016 Phys. Rev. X 6 041031 [44] Tan X S, et al. 2019 Phys. Rev. Lett. 122 210401 [45] Ahn J, Guo G Y and Nagaosa N 2020 Phys. Rev. X 10 041041 [46] Tan X S, et al. 2021 Phys. Rev. Lett. 126 017702 [47] Li Z, et al. 2021 Sci. China Phys. Mechan. Astron. 64 107211 [48] Gonzalesz Diego, Daniel Gutirrez-Ruiz and J David Vergara 2020 J. Phys. A: Math. Theor. 53 505305 [49] Bruno M, Zhang A W and Goldman N 2022 SciPost Physics 12 018 [50] Zhu Y Q, et al. 2021 Phys. Rev. B 104 205103 [51] Bhalla P, et al. 2021 Phys. Rev. Lett. 129 227401 [52] Li Z, et al. 2021 arXiv:2110.11649 [53] Ding H T, et al. 2022 Phys. Rev. A 105 012210 [54] Bruno M and Mitscherling J 2022 Phys. Rev. B 106 165133 [55] Zhai D W, et al. 2023 Nat. Commun. 14 1961 [56] Ma Y Q and Chen S 2009 Phys. Rev. A 79 022116 [57] Yang L, Ma Y Q and Li X G 2015 Physica B 456 359 [58] Ma Y Q, et al. 2013 Europhys. Lett. 103 10008 [59] Kruchkov A 2022 arXiv:2210.00351 [60] Kruchkov A 2022 Phys. Rev. B 105 L241102 [61] Tan X S, et al. 2019 Phys. Rev. Lett. 122 210401 [62] Ma Y Q, et al. 2013 Phys. Lett. A 377 1250 [63] Molignini P, et al. 2021 Phys. Rev. B 103 184507 [64] Chen W and Gero von Gersdorff 2022 arXiv:2202.03494 [65] von Gersdorff G and Chen W 2019 Phys. Rev. B 104 195133 [66] Porlles D and Chen W 2023 arXiv:2306.07366 [67] Ma Y Q 2014 Phys. Rev. E 90 042133 [68] Kolodrubetz M, et al. 2017 Phys. Rep. 697 1 [69] Ma Y Q, et al. 2021 Europhys. Lett. 100 60001 [70] de Sousa, Matheus S M, Antonio L C and Chen W 2023 arXiv:2301.06493 [71] Yi C R, et al. 2023 arXiv:2301.06090 [72] Chen W and von Gersdorff G 2022 SciPost. Phys. Core 5 040 [73] Ma Y Q 2020 arXiv:2001.05946 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|