Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050203    DOI: 10.1088/1674-1056/adbd28
GENERAL Prev   Next  

Adaptive multi-stable stochastic resonance assisted by neural network and physical supervision

Xucan Li(李栩灿), Deming Nie(聂德明), Ming Xu(徐明)†, and Kai Zhang(张凯)
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
Abstract  Stochastic resonance can utilize the energy of noise to enhance weak frequency characteristic. This paper proposes an adaptive multi-stable stochastic resonance method assisted by the neural network (NN) and physics supervision (directly numerical simulation of the physical system). Different from traditional adaptive algorithm, the evaluation of the objective function (i.e., fitness function) in iteration process of adaptive algorithm is through a trained neural network instead of the numerical simulation. It will bring a dramatically reduction in computation time. Considering predictive bias from the neural network, a secondary correction procedure is introduced to the reevaluate the top performers and then resort them in iteration process through physics supervision. Though it may increase the computing cost, the accuracy will be enhanced. Two examples are given to illustrate the proposed method. For a classical multi-stable stochastic resonance system, the results show that the proposed method not only amplifies weak signals effectively but also significantly reduces computing time. For the detection of weak signal from outer ring in bearings, by introducing a variable scale coefficient, the proposed method can also give a satisfactory result, and the characteristic frequency of the fault signal can be extracted correctly.
Keywords:  stochastic resonance      multi-stable      physical supervision      neural network      fault diagnosis  
Received:  23 December 2024      Revised:  27 January 2025      Accepted manuscript online:  06 March 2025
PACS:  02.60.Pn (Numerical optimization)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Corresponding Authors:  Ming Xu     E-mail:  xuming@cjlu.edu.cn

Cite this article: 

Xucan Li(李栩灿), Deming Nie(聂德明), Ming Xu(徐明), and Kai Zhang(张凯) Adaptive multi-stable stochastic resonance assisted by neural network and physical supervision 2025 Chin. Phys. B 34 050203

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[2] Mantegna R N and Spagnolo B 1996 Phys. Rev. Lett. 76 563
[3] Van den Broeck C, Parrondo J M R and Toral R 1994 Phys. Rev. Lett. 73 3395
[4] Li D X, Xu W, Yue X L and Lei Y M 2012 Nonlinear Dyn. 70 2237
[5] Anishchenko V S, Neiman A B, Moss F and Shimansky-Geier L 1999 Phys. Usp. 42 7
[6] McDonnell M D and Abbott D 2009 PLoS Comput. Biol. 5 e1000348
[7] Palabas T, Torres J J, Perc M and Uzuntarla M 2023 Chaos, Solitons and Fractals 168 113140
[8] He F and Yang Y 2021 Neuroscience 458 213
[9] Förster A, Guderian A, Zeyer K P, Dechert G and Schneider F W 1996 Int. J. Neur. Syst. 7 385
[10] Leonard D S and Reichl L E 1994 Phys. Rev. E 49 1734
[11] Lu Z Q, Chen L Q, Brennan M J, Yang T J, Ding H and Liu Z G 2016 J. Sound Vib. 370 221
[12] Dykman M I, Luchinsky D G, Mannella R, McClintock P V E, Stein N D and Stocks N G 1995 Il Nuovo Cimento D 17 661
[13] Lindner B and Schimansky-Geier L 2000 Phys. Rev. E 61 6103
[14] Liu Y J, Wang F Z, Liu L and Zhu Y M 2019 Eur. Phys. J. B 92 168
[15] Liao Z Q, Ma K J, Shamim Sarker M, Yamahara H, Seki M and Tabata H 2022 Results Phys. 42 105968
[16] Gong X L, Xu P F, Liu D and Zhou B L 2023 Chaos, Solitons and Fractals 172 113534
[17] Mitaim S and Kosko B 1998 Proc. IEEE 86 2152
[18] Liu X L, Liu H G, Yang J H, Litak G, Cheng G and Han S 2017 Mech. Syst. Signal Process. 96 58
[19] Lei Y G, Han D, Lin J and He Z J 2013 Mech. Syst. Signal Process. 38 113
[20] Li J M, Chen X F and He Z J 2013 Mech. Syst. Signal Process. 36 240
[21] Hu N Q, Chen M and Wen X S 2003 Mech. Syst. Signal Process. 17 883
[22] Guo W, Zhou Z M, Chen C and Li X 2017 Microelectron. Reliab. 75 239
[23] Li J M, Zhang J F, Li M and Zhang Y G 2019 Mech. Syst. Signal Process. 114 128
[24] Jin Y F, Wang H T, Xu P F and Xie W X 2023 Probab. Eng. Mech. 72 103418
[25] Jin Y F, Wang H T and Zhang L L 2024 Chin. Phys. B 33 010501
[26] He L F, Liu Q L and Zhang T Q 2022 Chin. Phys. B 31 070503
[27] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
[28] Gang H, Qing G R, Gong D C and Weng X D 1991 Phys. Rev. A 44 6414
[29] Dykman M I, Luchinsky D G, Mannella R, McClintock P V E, Stein N D and Stocks N G 1993 J. Stat. Phys. 70 463
[30] Huang D W, Yang J H, Zhang J L and Liu H G 2017 Proc. Inst. Mech. Eng. C 231 3964
[31] Michalewicz Z and Schoenauer M 1996 Evol. Comput. 4 1
[32] Bhoskar M S T, Kulkarni M R O K, Kulkarni M R N K, Patekar M S S L, Kakandikar G M and Nandedkar V M 2015 Mater. Today: Proc. 2 2624
[33] Katoch S, Chauhan S S and Kumar V 2021 Multimed. Tools Appl. 80 8091
[34] Wang J, Zhang Q, Liang N, Zhang Y Z and Xu G H 2010 Journal of Xi’an Jiaotong University 44 32
[35] Yang J H and Zhou D J 2020 Re-scaled Resonance Theory and Application in Fault Diagnosis (Beijing: Science Press) p. 76
[36] Feldman M 2011 Mech. Syst. Signal Process. 25 735
[1] An ADP-based robust control scheme for nonaffine nonlinear systems with uncertainties and input constraints
Shijie Luo(罗世杰), Kun Zhang(张坤), and Wenchao Xue(薛文超). Chin. Phys. B, 2025, 34(6): 060202.
[2] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[3] A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
Bo Xiao(肖博), Zai-Xu Fan(范在旭), Hui-Qian Sun(孙汇倩), Hong-Yang Ma(马鸿洋), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2025, 34(5): 050306.
[4] Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
Wenshu Zha(查文舒), Dongsheng Chen(陈东升), Daolun Li(李道伦), Luhang Shen(沈路航), and Enyuan Chen(陈恩源). Chin. Phys. B, 2025, 34(4): 040701.
[5] Graph distillation with network symmetry
Feng Lin(林峰) and Jia-Lin He(何嘉林). Chin. Phys. B, 2025, 34(4): 040204.
[6] Enhancing neural network robustness: Laser fault injection resistance in 55-nm SRAM for space applications
Qing Liu(刘清), Haomiao Cheng(程浩淼), Xiang Yao(姚骧), Zhengxuan Zhang(张正选), Zhiyuan Hu(胡志远), and Dawei Bi(毕大炜). Chin. Phys. B, 2025, 34(4): 046104.
[7] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[8] Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface
Abeer S Alnahdi and Taza Gul. Chin. Phys. B, 2025, 34(2): 024701.
[9] Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Chao Ma(马超), Zhiliang Hu(胡志良), Weitao Yang(杨卫涛), and Bo Zheng(郑波). Chin. Phys. B, 2025, 34(1): 018501.
[10] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[11] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[12] Deep learning-assisted common temperature measurement based on visible light imaging
Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Chin. Phys. B, 2024, 33(8): 080701.
[13] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[14] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
[15] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
No Suggested Reading articles found!